Bibliography
- Anderson, C. (2008). The end of theory: The data deluge makes the scientific method
obsolete. Wired Magazine. Updated 6/23/2008), Available at: http://www. wired.
com/science/discoveries/magazine/16-07/pb_theory.
- Angrist, J. D., & Pischke, J.-S. (2014). Mastering’metrics: The Path from Cause to Effect. Princeton University Press.
- Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton university press.
- Anselin, L. (2002). Under the hood Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267.
- Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability
in spatial association. Spatial Analytical Perspectives on GIS, 111, 111–125.
- Anselin, L., & Rey, S. J. (2014). Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. Chicago, IL: GeoDa Press LLC.
- Arribas-Bel, D. (2014). Accidental, open and everywhere: Emerging data sources for the understanding of cities . Applied Geography , 49, 45–53. http://doi.org/http://dx.doi.org/10.1016/j.apgeog.2013.09.012 The New Urban World .
- Brunsdon, C., & Singleton, A. (2015). Geocomputation: A Practical Primer. SAGE.
- C. Brunsdon, L. C. (2015). An Introduction to R for Spatial Analysis and Mapping. SAGE Publications Ltd.
- Downey, A. (2012). Think Python - How to Think Like a Computer Scientist. Green Tea Press.
- Duque, J. C., Ramos, R., & Suriñach, J. (2007). Supervised regionalization methods: A survey. International Regional Science Review, 30(3), 195–220.
- Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
- Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211–221.
- Haining, R. (2014). Spatial Data and Statistical Methods: A Chronological Overview. In Handbook of Regional Science (pp. 1277–1294). Springer.
- Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their consequences. Sage.
- Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The Parable of Google Flu: Traps in Big Data Analysis. Science, 343(6176), 1203–1205. http://doi.org/10.1126/science.1248506
- McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and
IPython. O’Reilly Media, Inc.
- Openshaw, S., & Openshaw, S. (1984). The modifiable areal unit problem. Geo Abstracts University of East Anglia.
- Rey, S. (2015). Geovisualization. In GPH471: Geographic Information Analysis. Lecture slides from course taught at Arizona State University.
- Rey, S. (2015). Point Pattern Basics. In GPH471: Geographic Information Analysis. Lecture slides from course taught at Arizona State University.
- Schutt, R., & O’Neil, C. (2013). Doing data science: Straight talk from the frontline. “ O’Reilly Media, Inc.”
- Symanzik, J. (2014). Exploratory Spatial Data Analysis. In Handbook of Regional Science (pp. 1295–1310). Springer.
- Tufte, E. R. (1983). The visual display of quantitative information. Graphics press Cheshire, CT.
- Wickham, H. (2014). Tidy Data. Journal Of Statistical Software, 59(10), ??–?? Retrieved from http://www.jstatsoft.org/v59/i10