{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": [
"remove-cell"
]
},
"outputs": [],
"source": [
"from IPython.display import YouTubeVideo, IFrame"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Concepts\n",
"\n",
"This block is about how we pull off the trick to turn geography into numbers statistics can understand. At this point, we dive right into the more methodological part of the course; so you can expect a bit of a ramp up in the conceptual sections. Take a deep breath and jump in, it's well worth the effort! At the same time, the coding side of each block will start looking more and more familiar because we are starting to repeat concepts and we will introduce less _new_ building blocks and instead rely more and more on what we have seen, just adding small bits here and there."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Space, formally\n",
"\n",
"*How do you express geographical relations between objects (e.g. areas, points) in a way that can be used in statistical analysis?* This is exactly the core of what we get into in here. There are several ways, of course, but one of the most widespread approaches is what is termed spatial weights matrices. We motivate their role and define them in the following clip."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{sidebar} Slides\n",
"\n",
"The slides used in the clip are available at:\n",
"\n",
"- `[HTML]` \n",
"- `[PDF]` \n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IFrame(\"https://liverpool.instructuremedia.com/embed/f9cab6bf-96dd-45b4-ae17-a9987db72eb8\",\n",
" width=500,\n",
" height=300\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once you have watched the clip above, here's a quiz for you!\n",
"\n",
"Imagine a geography of squared regions (ie. a grid) with the following structure:\n",
"\n",
"```{image} ../figs/l05_geo.png\n",
":alt: regions\n",
":class: bg-primary\n",
":width: 500px\n",
":align: center\n",
"```\n",
"\n",
"Each region is assigned an ID; so the most north-west region is 1, while the most south-east is 9. Here's a question:\n",
"\n",
"> *What is the dimension of the Spatial Weights Matrix for the region above?*\n",
"\n",
"```{tip}\n",
":class: dropdown\n",
"\n",
"It is one of the following:\n",
"\n",
"1. $3 \\times 3$\n",
"1. $9 \\times 3$\n",
"1. $3 \\times 9$\n",
"1. $9 \\times 9$\n",
"```\n",
"\n",
"```{admonition} Solution\n",
":class: dropdown\n",
"\n",
"It is nine rows by nine columns. To see why, remember that spatial weights matrices are $N \\times N$, as they need to record the spatial relationship between every single observation (regions in the example above), with every other single observation on the dataset.\n",
"```\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Types of Weights\n",
"\n",
"Once we know what spatial weights are generally, in this clip we dive into some of the specific types we can build for our analyses."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{sidebar} Slides\n",
"\n",
"The slides used in the clip are available at:\n",
"\n",
"- `[HTML]` \n",
"- `[PDF]` \n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IFrame(\"https://liverpool.instructuremedia.com/embed/b357c1a5-34d3-4370-accb-aface19238f0\",\n",
" width=500,\n",
" height=300\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a second question for you once you have watched the clip above:\n",
"\n",
"> *What does the rook contiguity spatial weights matrix look like for the region abvoe? Can you write it down by hand?*\n",
"\n",
"````{admonition} Solution\n",
":class: dropdown\n",
"\n",
"Here it is:\n",
"\n",
"```{image} ../figs/l05_geo_w.png\n",
":alt: regions\n",
":class: bg-primary\n",
":width: 500px\n",
":align: center\n",
"```\n",
"````"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The Spatial Lag\n",
"\n",
"We wrap up the the set of concepts in this block with one of the applications that makes spatial weights matrices so important: the spatial lag. Watch the clip to find out what it is and then jump over the [next part](lab_E) to see how all of these ideas translate into delicious, juicy Python code!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{sidebar} Slides\n",
"\n",
"The slides used in the clip are available at:\n",
"\n",
"- `[HTML]` \n",
"- `[PDF]` \n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IFrame(\"https://liverpool.instructuremedia.com/embed/213617bd-d096-4355-bf85-c8ea08cf7eb2\",\n",
" width=500,\n",
" height=300\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## More materials\n",
"\n",
"If you want a similar but slightly different take on spatial weights by Luc Anselin, one of the biggest minds in the field of spatial analysis, I strongly recommend you watch the following two clips, part of the course offered by the Spatial Data Center at the University of Chicago:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Lecture on \"Spatial Weights\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": [
"remove-input",
"hide-output"
]
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEBAAMBAQEAAAAAAAAAAAAAAQIEBQMGB//EAD8QAAEEAQIEAwcCBAQEBwEAAAEAAgMEEQUSEyExUQZBcRQiIzIzYXIVsUKBwdEHFlKRJGKh4TQ3Q4KDssMl/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECAwT/xAAlEQEAAgECBQQDAAAAAAAAAAAAARECAyEEEjFB8BMUUeEyYfH/2gAMAwEAAhEDEQA/APhR0CqDoEQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQERMICIiAiIgIiICIiAiIgIiICIiAiIgIiICh6FVQ9CgDoFVB0CqAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgJ5oiAiIgIiICIiAiIgIiICIiAiIgIiICh6FVQ9CgDoFVB0CqAiIgIiICIiAiIgIiICIiAiIEBERAREQERVoLnBo6nkEERfoEjNH8H0aws0/ars7cl2AenXr0HNc3VdV0DWNJsOZSFW9G3MeQBu/mOvoUHyKIiAiHovsvHlSvWq6Ya8EcRe07ixoGeQQfGoiICIBkgDqsnxvikcyRpa9pwWkcwUGKLtijpX+VvbDb//AKG7HCz9+mPTnlcRAREQEREBFVEBERAREQEREBERAREQEREBERAREQEREBQ9Cqo7oUFHQIoOgVQEREBERAREQEREBERAREQEREBERAREQFWnBBBwQoq1u5wA8zhB+hwWNL8ZaXFVtScHUIW8j0Oe47g46L5LXfD9zRJfjt3wuOGSt6H+xWpdo3NKtmOdj4pGnLXDln7gr7jS7Mus+CrY1Mb+G1wbK7+LAyD/ACQfPeG/DcepV5NQ1CY16MROXA4Lsdf5LpRVvBVyUVIpJ4pHHa2QlwBPqeS9pGPt/wCGkTaYLjGRxGs68nc/7r4eKOSWVscTXOkccNaOpKDp+I9Dl0O5w3O4kLxmOTuPv919F/iH/wCD0r8HfsFfHvw9E0uGYg2G/N3+XB/6qf4h/wDg9K/B37BBztd0ilT8K6ZdgiLZ5wziO3E5y3KngjSKerWrbLsRkbHGC3DiMHP2XQ8SNL/AmjObzDRHk/8AsU/w0a72u87advDaM45Zyg8fAtbTJNUPHLpLjS4xRlvutA88916+I5PDHE1Fojm/UdzxnDscT9uq0vAnLxYPwkXK8RNP+YtRBBz7Q84/mg6w0in/AJC/U+Efa9+N+4/68dPRefhzw1HqFWTUNRmNejGTzBwXY6/yXSH/AJWf/J/+i9bDH2/8NoRTBdw9vEazrydz/ug8Yq3gu7IKkMk8UjjtbIS4ZPqeS4HiHQ5tDu8Jzt8LxmOTuP7rmwxySzNjiaXSOOGhvUlfa+P/AIek6XDKQbDfm7/Lg/8AVB7azofhvSBWsWmytYRyhY4kyH+wWpf0bRtU0GbU9Fa+F9cEvYc88cyMH7LP/Ejppv4O/op4N5+Fdc/B3/0KD4lE8kQEREBERAREQEREBERAREQEREBERAREQFD8pVQ/KUEb0Cqg6BVAREQEREBERAREQEREBERAREQEREBEVQRVpIII5EcwoiD7Kr46a+u2LVNPZZLRjc3HP+RWnrvi+XUqfsVSAVax+YDq4dvsF8yiDsaB4itaJI4RASQPOXxO6E9x2K7/APnajFmWvo7GWD/GcDn/AC5r4hEG5qup2dXtusW37nHkAOQaOwXR8R+IBrcNSMQGL2cEc3Zz0/suEiD6fRvFjaem/p+oVG26w5MBxyHbmtup44iqSvZBpscVXb7sUZAOe5K+NRBuadqM2m6jHdgxvY4nB6EHqF9PP41pyNfI3SGe1vbgyOI/fqvjEQdwa+0eE/0bgHO7PE3f827osNA8RWtDe5sYEtd5y+J3QnuD3XGRB9t/nejFmWto7GWD/EcDn/LmvldU1Ozqtx1m2/c88gB0aOwWmiDu+Jdfbrvsu2AxcBpHN2c5x/ZTRdfGl6TfpGAyG00gO3Y25bhcNEDogREBERARFUEREQERVBEREBEVQRERAREQEREAIehRD0KCtHIK4RvyhXCDFXCuEwgxwmFlhMIJhTCywiDHCYWWEQRTCyRBjhMLJCgimFlhMIMcK4VTCDHCYWWEwgxwrhVEGOEwssIgxVwrhMIJhMKogmFMLJPNBiiywiCYTCqYQYphZYRBjhMLJMIMcJhZJhBMKYWWEwgxwmFkiCEKLJMIMQFVUQY4TCyTCDHCYWWEQY4TCywmEGKYWSIJhTCyTCCYUI5FZYUcOR9EGTflHoqo35R6KqiKqphQYorhMIIiquEGOFcKphUY4TC9X15o4WTPie2OT5HluA7HYrzUDCiyUIVERXCYUERXCYQFFVs1tPuXGl1arNMB1MbCQFRqphZyRvie5kjXMe3kWuGCFioIiuEwgiKqoIossKYQRMKq4QYorhMKiYRXCYUEwmFlhZtryvhfMyJ7o2YDnhvJue5QeaiqIIqi3v0fUjGHihaLSM5ER6INFFXNLSQ4EEciD5JhBiiq9Zq8sGzjRvj3tDm7m4yO4QeKL1jrzSxyPjje9kYy9zW5DR9+y88IIiuEwgIqogmEVTCCYRXCqDHCuERUFMK4RBFHfKfRZKO5NPooKwe4PRZIwe430VwqJhFcIgmEwqiCLb0qi7UtRgqMO0yuwSfIeZWrhe9OzJStxWYDiSJ25qD7m/4FotoPNV8jbDG5DnOyHEfZfny+wveOp7FF0MNVsUrxtc/dkDvgL5DCD6W7D7R4b0CEHbxJnMz2yQFh/lWN1qenDqcL7sWTwtpAIHc91XXqp0rQo+M3fXnLpW/6BkcyvarqNNnjK5cdYYK7xIGyeRyBhBzbeiQxaZJdqX47TYXBswa0jaT27hbUnheFphjOqwMszRteyKRpGcjkMrW0+1BF4c1Wu+RrZZQzYw9XYdzXc1elTkuULNvUYq7Yq8RdGQS8gc+SDgVfD9qe1ZimfHWZV+tLIfdb/dZXNBMVT2unbhuVw4Mc5nIsJ6ZC6X6vR1STVK1mQ1YbcjZIpS3OC0ADP+y8XP0/StHtUorzbc1wta50bTtY0Hr6oNbVNAh02Fwk1GI22MD3QFhGc9j5pX0CL2eu+9qMNSWyMwxOaSSPInsupcs0joM8FrU4L5DAKmGHiMP3PZerdVZeo1XQ6vHp8sUYZLFJHkHHmOSD5K5Ulo25K04AkjdtdhfUUTPqOgVYNGucC1VyZYN20yfcd187q0on1GWQWXWgSPjObt3cuy6On0tNfHWss1cVJ48GVsjTkEebSg9NO0z9Xt35tWtcOeFhLwR72QANxx5BeNbw/HbFx1a/G+KsGkyFpAIPX0wukzVqNrxDqTnTCKC3W4LZnNIBIxzPrhakbqen6Vq1Nl6Kd8scewsBAcc8wEGudAhk9odU1GKwyGsZyWtPl5fZaUWmF+iy6jxOUcrYtmOufPK3fDVqtBNbgty8GO1XdFxCMhpPdbUz6VHw3LThvxWbHtLJMMBA5du6Dxk8OwVowy9qkFe25m4QlpOPsSsmaFp40Ovcn1JkUkrjz2kjkPl9VsarFpms2XaizVY65kaDJFI07mkDy7rygNHUPD0FKW/HVlrTOeeID7zT2Qcq7ppqU6NjiBwtsLwMY288LoDwvI7VbNFtlu6GHi7i3AP2XvKdP1HSNPZJqMdd1MOY9rmnLhnkWjzW7NqtF2u6nM2ywxS0+Gx3+p2OiDjjw+yaeGKnqME+5rnSuAIEQb1J+y8r2jRRUTdo3o7kDHhkha0tLCenLsvTwxqUOnXpPaHmOOaMxmQDJYT0OFu6vZI0+WN2vMt7yNsMUWN3PzOOSD52rWlt2Y68Dd0kh2tHcrtf5YD3urw6nVkut6wDPXsD3XP0W43TtWrW5GlzY3cwOxGP6rtV4NHqaoNU/VmyRMkMrIWsPEJ64KDQq6C2TTjdt3GVWMmMTw9pJBHbHUrV1jSzpk8TRK2aKaMSRyNGNwXR1HUoLnh57d7WzvvGXheYaQea19ctQWKOlMhla90Nba8D+E56ILoGkVdRguS2rTYRBGXAYJx/zH7LpadSr/omr1mXozAHx/8AEEEDHInkud4cnrMF+ranEAt1zE2Rw5A/de+6nR0TU6TLsU75DGWloIDufPHog1L2hGH2R9Kw23DbO2NwG07uxC9pPDkeJoYNRhnvQNLpK7QfLqAfMrYr6rXq6NpGHtfNWtOkfGOoHP8Auujb1CN8ktmHxE1ld+XCIQ/EGf4eiD4k9Cv0HUa2sSWaEtC22Cu2vHu3Shoz58vRfn55grteKbUFy3UfWlbK1lVjHEeThnkg6Oq6ZBrWp6jbqWYo4q+wSPI90k53Oz/Jc5vh5s9lzal+CWsyMSSWDlrWDsR3U0u1BDoGqwSStbLMI+G09XYzlZaHcqew3dNuymCOzgtmxkNcO/2QeN7QuFRfdp3IbkEZxIWAgsz3C7mq6XVvjTBNqMVaV1SNsbHNJycefZaLn0dH0a7WgvMuWbbQz4YO1jc9fVbNpul6gNOsyatDE2vBGySPaS/I6gIPDT6ctCh4hqzgCSKJoOOnmtaHw9Fsgbc1GGrZsNDooXAkkHpk+WVuSavVtHX5TII/aY2Nha7q7HJbrtWjvwV5oNZjoPZGGSRSR55jzHJBw63h90kV19q1HV9jlEcm9pP+2F7SeHK0TYrMurQtpTD4cuw7nHttXpLfru0rWI3XOPLNPG6Nzhh0gHU4WpqFqCXwzplaORrpojJvYOrck4QaWq6dJpd99WVzXluCHN6OB6Faa7PiizBc1RstaRsrBBG3c3uBzC46CJhVVBimFlhTCCKLLCYQRRZYTCCKP+U+iywo/wCR3ogrPkb6LJRnyN9FlhBFMLLCIJhMK4TCCIqiCYTCqYQTCKphBD5re1XUnanLDI6IR8KJsWAc5x5rSRBEwqiCIqiCYTCqIIiqYQRFcIgiKogmEwqiCYTCqIJhFUQTCKogiKogmEVwiCYRVMIIiuEQRMKphBOiKogmEVTCCFFcJhBEwqiCYTCqYQRFUQRMKogmFH/I70WWFi/5HeiDJnyN9AqkY+G30CyQY4TCyRBMKYWSYQRTCywmEGOEwssLY07gjUK/tOODvG/PZBrmN7WhxY4NPQkciscL9T159D/L8/EMRiMR4eMdce7tX5dhBjhXC+m1SKrLo5m06tVMTAwSODcTRO+/cFbk9TSabmUrDaoYYhueWOMpJHzA+qD43BxnHJRfS2rEMPhimG067zI6Rm5zeYION3qubobqbdSYb7GuhwfmGWg+RI7IOZhML6p2mxHUJZrFSuYoaxnYyscMsY6FajxV1PRrlllKKpLV2kOi5NeD/Cfug4GFcL7IwUBrkemnTq/ClgDnPAw7OzOQfLotEQ1dT00yCpDWfFbjh3RDGWuOOfdB83heleB9mwyGIDe84GSAP9yvqtRg0mM2qbmVYjG0iPYx3FDh3PnlcHQYY7Gt1IpmB8b5AHNcMgoNB8bmPcx3VpIODlQAnoF9K4VKOkOsew15pPbJIxxG5AaPJbkUVajq+pNiqQub7FxmtcMhuQMtH25oPjcIAvqNOjpyadY1OaCmxzp+G1sjCY4xgeQ7rOKDSnWL88UMc0LKnF2AENa/z258kHyqi+hpWI7cks7NJosbGwb3ycomc+uO5/otyXS6UetW5BXbJFBVFhsA6OJHT0QfJgEnAC9Yqsk0E0zA3ZCAX5cAef2819HoVyvc1yE/p1WItY/5G8s4znHdasPAvadqtk1IIXRxx7AxuA055kIODhF9TOyjR1SLS/0yOZh2tdK7O92fMFYyVqml6ddf7LDZkhumJjpW55Y8+6D5jCmF9WYdLr60HzwwxxT1WyMD25jjee47Lj63A+DUXMfXigO0ENh+QjuPVBzcHGcclMFfSPsRQ+FKn/BV3mSSRhc5uSDj5vVZWhS0qxXojTI7QexjnyvzueXf6eyD5nCYXQ1qkyhqtitE4uYx3u57dV2Y56sehPt2tMpMc8cOuBHzefNx+wQfL4UX1tWvp1PTKMlhlRxsN3yOnaSTz6NI6YWuyOhT0y5ZZWjtCO5siMo/hLR1QfN4TC+jnfTpUq9waZXlddLnkPyWRAHG0LS1+pDWsQSQMMTLELZeEf8A0yfJByMKqogmFMLJEGOEwssJhBMIrhMIMcJhZYTCDHCLLCYQY4TCyTCDHCYWWEQYqPHw3eizwsZB8N3oUFj+m30CySP6bfQLJWhirhXCIMVVUQYoskQY4RZYTCCZJAGTgdBlRZIg6FnW71qq6vLIzhvxv2xtaX46ZIWUWv6jFA2FsrCGDaxzo2uc0fYlc1EG9X1i5XqOrMe0xEk4ewOIJ64z0WvStzUZ+LXc0OxtIc0OBHbBXjhFBvSazffcjtcfbJG3azY0ABvbHTCl3V7l+HgzSNEWc7GMDQT3OFpIrQ3Dq1z25t3iN47G7A7aOmMdPReTLthlWSs1+IpHh7hjnkdOa8ESh0pNf1GWAxPlYct2l/DbvI7ZwtGrYkqWY7EBDZYzlpIzzXmiUNiW9YmrezyOBj4plxj+I9V7N1m6297YJBxdgjJ2DBbjGCFoolDoxa7fimlkZIz4uNzOG3YcdOSwk1i7K6Zz5GnjR8JwDABt7DstHCYShs0tRsUWysgc3ZKMPa9gcD25Fe79cvvtx2uMGzRt2BzWAZH37rnolDoSa3dfahsB7GSQ52FkbWjn1z3WM+sXLDZmPdGGzNDXhsYaMA5/qtFEodKLxBqUULY2zNO0bWvdG0uaPseq1HXrDqjqrn5ifJxXZHMu75XgiUN9mtXWTCXewkRCLDowQWjoMLWu3J71gzWH7n4A5AAADyAC8cJhKG7U1e5UrOrxPZwicgPYHbT3Gei9a+v6jXgZEyVpDBhhcxrnM9CVzUwlCyPfLI6SRxc9xySfMrpt8Rai2COEGHZG3a0GFpwFy0Sh0KmuXqkHBjkYYwS5rXxtdtJ7Z6Lwl1G1NBLDJJuZLJxX5aMl2MZWsmEob1LWLtGIxQyNMechj2BwB7jPRatu1PcsOnsSGSR3UleaJQxRZJhBimFkmEGKLJEGKLLCYQYq4VwiCYUWSIMcBFlhMJQxRZJhKGKxk+m70K9FjIPhv9ClCx/Tb6BZKR/Tb6BZIIiqYVERVEEwmFUwgiK4XrUrutWooGYDpHBoJUHimF9lqPg2Gvpsk0E73TRMLiHdHYHNfHIImF2GeHpiI2y2q0M8oDmQvedxB6eXJedbRZZo7T5Zoq4qvDJOJnlnPb0QcwAnkASVF9JpOnOo63G1z2TRy13vjezo4YXPboc77dWBkjHNsx8RkgztA88+iDl4ymFvUpoKdmcTMMrSx0bXM5c+4XvDHHqgo0a7eFMwODnuPunzysZZ1O8bDlYTC6NjSXRVDYjsRTta8MeIyfdJ6eq9X6HIxjm+0Qmyxm91cE7gMZ/3+ynq4fJUuThAM8gMldd2mT2G0mNEDA+Aybhyw0HmXfdbmmaW2pqdKX2qGZsu/bsB5+6e6zlr4YxZT5zCEEHBGF1ZdMMTRZjsRTMbKGyBmfcJK39Y0g2tTsugsQGXAdwATuwGj/qnr4XEWtPm0XSr6Q+WsyeWxBXZIcR8VxBckei2X3ZajixkkcZkyTycPsVv1cN9+iOargkE45DqutHofFc7ZdrujYze97STt54wvHjCjBcptdHOJg0B7OY65yp6sT+O45xBHUEItzUbnt00by3BZG1mcdcea3INNluU9PjbwGCeV7Wv2ndy/wBR7LeMzMXI46Lq2NFdFVknZbrzCJ4bKGE+5k46r11DQmVXV44bcc08oZiIA5Jd5j7Kjioura0V0EE0kVqCw6v9aOMnLP7rOzoJqtPFu1mybA9kZJBeCg46Lqz6MYqktiK5XscHHFZGTlmf3WR0Mx12vs3a9eV7N7IXk7iP6IOQi7F3R4aunQWPbonSSR7+Hz97n5LRoUZb9kQQ4BIJLnHAaB1JQa2DjODhRfTexRw6CY4LMFkuuxjc0HAPYrVm0WWexekfNWgbXlDZOoaM+Y+yDhphddmiA8V771ZlZjgwT5Ja8kZwFi3QrBuywPkiYyJgkfMT7m09Cg5SoBwTjkF2aeiQ2dSbWF+B8ZjL97M5OM8sd+S9qlWKLTdViZYimbiH4rQcDLig+fRdY6FO27ZgfIxra8fFdKc7S3yx6rl4QY4RVMKiIssKYUETCuEwqIiuEQRMK4TCCYTCuEUEWMn03+hWeFjIPhu9CgsX0megWaxi+kz0CyVBEwiAiqiAorhEEWcUj4ZWyRu2vYcg9isUQd674svXKLqrmRM3t2ve0HJH9FwUwmEH0EtvSb1qK/ZnmimaG74WsyHFvYrxl1WGxU1XflktuVj2NA8h91xUUofQ1dWqRSaeXvdiCq+N+Gnk49EguS0fCRD8CSd7mQE9Ws5bl8+vezbmtNibK4ERM2MAGAAg11vaNZip6nFPMSI25yQM+S0cKqZY82M4z3G/VuxQ6XahJ+K+Vj2DHXByunY1atY3Tt1CzC5zecDYwcHHQHsvnMKrlPD4zNrb6TTrMc8tN7X7YqlYtsFw5AHy+6jp+Bcp3nzQPoRlzGcBhAaSDyx1XDqW5qcpkgdtJGCDzBH3CzuahYuhomcNrejGjaB/JcZ4aeb9Fverchi0+3E5x3yysc0Y6gE5XQkv6bHqUupxTySTOb7sXDIAOMcyvnVV1nh8ZmZvqW6wnoXqdaO5NJXlrt2ZazcHN/oV6/qtY3JnDc2EVDXiyMk8sDK4aqTw+M7TJbf0aeKtO6R9t9Z4HuuazcD3BC89WmrT6hJJUZtidjHLGT5nHktNF0jTjm5kF3NP1OrXi0psj3A1pnvkw08genquJhRbHThuws0/VIXOO+wW8Pl1w7K3JtSoumpagyZ/tNdkbTAWcjt681wFUofQalqVaaCwYdTtO4oO2AxgAZ8iey0NZuQXdRjljLnRCNjXcsHkOa5yiD6abUtMNK7Whn2RyxtEUbYCNhHkT5k91q3J9L1MMs2LMtewIw18Yj3AkDAwVw0QdexYo3NJqiSd8dmtEWCMMyHnPLmtbSLsdO08zNJhljdFJt6gHzC0cIqO8LWm1NPbXr2ZJj7VHMd0RbgDqsb2p1Z6+qMY526zOx8funmAuGmFKHc0nVIYtNdSmsy1SJN7JY2bs56ghZjU6j5rVezasTV7ETWGdzRuaQcjA7LgKpQ7FGfT9M1iGWKxJPBsc2R/D27cgjkFOPQq0b9avYfNx2s2uMZGSCcrkKtO1wPY5Sh9Bq1yWHQKVKUgWJWB0h89gJ2gr51e9u1NcsOnndue7H26cl4KgiYTCAiIgIiYQERMIIiqYQETCICwl+m/0KzwsZfpP/EqDKIfCZ+IWWFIvpM/ELJUTCYVRBMKYWSIJhMKogmEwqr15BBjhFuzaVer1xPNVkZEf4iFqIMcJhZbXEZAOB5pgnyQY4TCyAJ6DohaQcEHPZBii9GQySSCNjHF56NA5rEsI6g8vsgxwmFnscTjac9sLOGJj2yF8ojLG5aCCdx7KTNDxwmFnsd/pPfosVREwt2nRdNfgrztfGJSOeOeCteaIxyvbg4DiAT54KzzRdDyTCy2nGcHHdTC0JhMLIscBktOPRMHlyPPogxwmFmGuPQHsm08+R5deXRBhhAFvTURHp1Wy0uc6YuBGOQwtMAk4AyVmMoy6DFMLLa7OMHPZCCMZGMrQxUwswCegytihUddux1wdu84J7KTMRFyNXCYWzdZWjsFtR8j4wOsgwcrx2OwTtOB15JExMWMMIsg0u6An0Xo2JhrvkMoD2kAR4OT98pY8cIsw0nng474W1qdIUrj4WFzmtDTuI7gH+qnNF8o0sJhb09ER6fVsMLnOm3ZGOQwVp4THKMt4GOEwstpzjHPsqWkDJB7dFoYYRZOaQcEEeqmEETCqIIiqIIiqIJhMKogmFFmiDHCwlHwn/iV6LGX6T/xKBCPhM/ELPCkX0mfiFkgmEwskQY4TCywmEGOEwslEEwtijKyvdhmkbuYx4cR3C8cIg+91bXtNfpEwZOyV0sZa2MdckefZfALLCYSh9Bqcl2uRBRiPsRiGNkeWuyOZJU326tKl+mQ7mSRgyObHu3O8wVx2XLUcJhZPI2M9Wh3JILlmu0thnkjaeoa5eWNHKIiPJW3fkLaj9VfWaxrmxxkgAENceuF5Gd5k0q6+E2Jix+8NblzgPP1C4ImkDXtD3Yk+YZ+b1WTbM7OHtleOH8mD8vosxw+XefKLfSxGdmt1JHTGRk8btm9m14HYrUqT2uFqNi008YQt28RmOjuS4slqxLMJpJnukHRxPMLKS5ZlLjJO924Ydk9R2T2+Xei3VoW71hs1szBoYWte5kW57uwAXvaibHc1jDNoNbI5Y7Lgw2Zq+7gyvZu5HacZVfbsPzvme7c3YcnqOyuWjlzTXQt9ELUrNS02s3HBlhYHt2j3sjzXzcnwbjtmBskOOXYp7RNxGScV29gAac9F5nJJJOSeZW9LSnDr8FvqbEtqTXqjXbzWDo3A7fdyR3Wk+xJcoam2chzYSDGMfL72OS5Yu2tjGe0SbYzlo3dF5CWQB7Q9wEnzjPzeq548PMV53LfUzubC9sMUFiaqYxiOOIGNwI657r5iqB7dEMYHFb19Vky7aZCYmWJGxn+EOOF4glrg5pwQcgrpp6WWMTEyW+llnksalqdOXBgZE9zWbRgEY5+q8BA+Wzoz443OYI25LW8hg88ricebiPk4jt7wQ52eZWUdyzFFw455GsznaHcsrn6GcfjPlFu1NYkqULssB2v9ucA7HMdVt+0yHW61bDODYiBlbtHvEjqV8u6aV7HNdI4tc7cQT1PdX2mcTNl4ruIwYa7PMKe2ymOvz9Fu5DNeg0aiKLXuJkeHbWbvNbTI4Y7upSQNIna1nKJoJaT820eq+chu2oIzHFYkYw+QcsIp5YZOJHI5r/9QPNPb577/Zb6OCQS6rBI6vK1/Ak3PmYGmTA64Xz9u9PdEYncCGfLhoGFHXLL5eK6eQyYxuLueF4rrp6PLNyluzp3Fh0h89GPfZ4u15Ddzmt8sBdGo6Rt7TpZmiK3MHiVoGC5o6EhfNQWJqz98Ero3d2nCe0zmfjGZ/F/155rGpoZZ3v18pbY2JX2J3Syu3PceZX07rEj9cFJ2013w+8zaOfur5XzXr7TPxuLxX8QDG7PNb1NKcqrsjv0Xez6PXfXE+5z3cUwRhxJzyDvtheU3C9ivu9ndEz2mMmJwwQOy40FuxWzwJnx567ThZ1bbo7DXTF0sW8Pewn5sd1znRzi5tbd7VbRqVrETpxibaIoWM2mNvmD/JehsySeIDSeQa7oRuZjkfcBWlZ1WvJWsNfPNZ4rSGRvjAEZ8jn7Lje0TcbjcV/ExjdnmueGhOW89f4tu5DNeh0fTxRa5xcXbsMz59CvSSNsVnUpaMTHWmbNrQ3O3PzED1XBhvWoI+HDYkYw/wAIdyXnFNLDJxI5HMf/AKgea6e3y+fvdLfQN4kzdOnuxhlo2g0Zbtc5n3HqtaXUrB1bgCISxRzkthDeuMrlSWp5ZhNJM90g6OJ5hYCSQS8UPcJM53Z55WsdCbuS3X8QCWSOCw6R7onl21krNr2dx9wuIvexZnsuBnlfIQMDcc4XlhdtLGccIiUlimFkougiYVVwgxRZKeSCJhZKIJhXCYVQY4WEo+E/8SvVYS/Sf+JQWL6LPxCzwsYvos/ELNBMIqiCIqiCIqogIiICLJjHSPDGNLnOOA1oySo5pa4tcC0jkQRzCCIqiCIqogIiICIiAiJhARe5p2RFxfZ5uH137Dj/AHXjhBMIiICLNsUjmOe1jixvzOA5D1WKCJhF7x07UzA+KtNIw/xNYSEHhhFk9jo3Fr2lrh1BGCsUBMIqgiKqICKqICYRVBMIqiCIqogYTCIgIiICKogiYVUQEwiICKogiKogmFhL9F/4lZrGX6L/AMSgQ/RZ+IWaxi+iz8Qs8IIiuEwgiKogi2KFR167FWYQDI7GT5LwwvWpYkqWo7ERw+N2RlB9Xc8IV2UnOryv4zW5y48nL45fUXPF8k9N0UVfhyPGC4uyB6L5hIHZ0BjazbOpyNyKzMMB83nosfEMLHzRahCPg22b/R3mFsSaqdMoVKunSsLtu+ZwG73j5KHVP1XS7Ne/KwTR/EhcRjJHkoNW1ozalfdNdhbPw+JwSDkj7Huj9GbFUjlmuwxyyR8VkTgeYx37romWt+kyxW70FqIR/AAB4rXeQ9ErS1m6W6K5egsVuF7kZB4kb8dAljhzUXQ6dXuF4LZy4BuOYwtxuhSOvtqcdgcYONuI5Y7L2YK97Qq1Z1uKCSs9xcJM8we3db3t1RutmRthhi9h4Yfnlnt6oOYNDa+vx4tQrviYcTP5gM/uvG1pEkMlYV5W2Y7P03s5ZK9KU8TNAvwukaJJHsLWk8zhbUGoQ1aOkO3Bz4JHl7B1AJP90GrLogayUQ3YJ54RmSJmcgDrjuubFGZZWRggF7g3JOAMr6e1byJJY9ZgEDgdrRGN+D5Ywvmq4jNmITkiLcN5HkM81R0LOjtjpyWK9yGyISBI1mfdz+651dzWWI3SN3Ma4Fw7jK+mkkqipfqx26bI3tHBazsO58yvmYQwysEpIjyNxHUBB9Jq0mo4feo2jNRe35W8wwY6ELmGrPLpunNdJGI5pHMYNvNpzjmfNdCgKelSTWG6nHNA5hAiaDuf2BC12WoP0/SGcRgdFO5zxn5RuzzUGD/D5Es0DLsL7MYLuEAckD7914U9HNiCOaa1DWZK7bHvzlxW7Wt12+K57DpmCF2/D88jlq2tNhc7R4jLDBLIJC6u2d23l3Hfmg1xUFHS9XriUSlnD3EAjBz0WlDowMcJs3Ia8k4zFG/OSPLPZbUkskdXV49QLY7cxYdhPX0/kt0aiLlWB8GowVXMjDJI5WDqPMFB8vYgfWnfDKMPY7aQvpqkWoS+GqQ055Y8SP3EODeWSvn9Rk4t6V/H4+T9TGN3Lst21Yid4cowNkaZWSvLmZ5gc0G/q9eO5JWZYuQMsQw/8RMTnnnkOXUrk29KdWsVmNnjljs44cjehycLPRW1HTSmy6IPDMxcX5C77roahPDI3SpDbrvdA/EgZyx7wOQO3JBpWdEFYysfegEzDgRE8yP6KT6K1lWaaC7DYMAzKxmeX9156rJDPrk8gfuhfLnc3ny5Ltl9NkF6tDbpshkixCG9fVx7oOVHojODWknvQwiy3LA4EnPb/usx4dfxn13XIBbAJbCMnI9fJY6hYhfDpIZI1xijAfg/Kd3mtsXK3+cvauMzgZHxM8vkAQcunpnHrOsz2I61drtm9+Tl3YBbVXQt+qRVprEfCkbxGSNP1G/Zbel32HTn1G246szJXPa6RuWuBUbeZDrdOSxfZYawOa57GYazP7oNA6O2W8K9S3FM3aXPfzAjA7rC1pbYqvtNa1HahDgx7mAgtJ6cl0aElbStRfvuxSMsMcwvjG7h88glY6nO/wBiex+rQT7i3EcTB73PqT5INexoQq8QT3oGODN7GnOX8s/yXHXU8Qzx2dTL4ZGyM2NGWnl0XMVERXCIIiqYQRFUQRFcJhBEVwmEETCqYQRFUwgiK4TCCLCb6L/xK9FhN9F/4n9kFhHwWfiFnhYw/RZ+IWaoiKogmEVRBEVRBEVRBEwqiCIqiAoqiCIqiAoqiCIqiCIrhMIIupHqsTq8MVukywYW7WO3lpx2K5iKDY1C6+/aM72hvINDW9AB0C1lUQRFUVERVEERVEBERBEVRBEVRBEVTCCIqiCIqiCIqiCIqiCIqiCIqiCIqiCIqiCLCYfBf+JXosJvov8AxKgsP0WfiFmsIR8CP8Qs1QREQEREBERARF70hF7ZDx/pbxu9EHiWkAEg4Pmov0LWBS/RZuJwuHwzw8Y645YX56pAIu5qEVZ+l8WjXgdE0ND3gkSRu/5vVbU0NH9Sh040IwJWN+KwkOBI6pY+ZTC+j0ulA8x1p6cGx7nM4z3e+8jPNoXhxYYfDsbjUhe4zuYXOHPIHX1Sxx5oJIQziADiND28wcgrOlVfdtMrxkNc/oXdF1TWiZYqcOmyYuqNeQ44aD5uctyCCCPW9NmgZGzjMLnCI5bnn0Sx8uRgkIvWEA2mgxmUF/yDq7n0Xav1YXadxTWrwTRThjmwuzgHyd90scBF9AKVc+JLFfhN4LYiQzHIe4CvKeaGPQKYFSEul3jeRzB6Z9UscRF35mUqV2LT3UWzA7Q6Uk7iT5hYex19PZenfE21wJhExr+gzzyUscJVdmuKs0VvUH02bYQ0NgaTtyfM/ZZtr1rsNW22s2D/AIlsT2N5teCR0Sxw0X0GKb9abQbQiDBPjfk5I8x6LGvHTuaqKIqRxsjkeS8E7nBoPIpY4cbDJI1g6ucAP5rO3WdUtS13kF0btpI6LsztoPEbo/ZmTsnZtbBnmM8858wtiVkZ1a46WnBJGbAa6Wd2AOnIfdLHzK9DBIK4nwOGXbQcjr6LvxR16T9YYK0crYQNvE58iRyWn7NBZoV5GxsifPcLCW/wtPl/JLHIRfQRx0ZdUdpfsAa3JYJQTvBHmV5htanptOR1SGeSSR7XOd5gHCWOGi3dYrsq6nPDEMMafdHbIyt2c1dNgrRmlFYdLEJHSSZ558h6IOKouwxtahptad9VlmSwXHMhO1oB6eq3ItLpmz7RsDYjW9oELycNPY+eEsfPwxPnlZFGMvecAfddA6M8Tvj9pg2RNzLJu91nPGD910qho/qVGSFtczOkLHtiztAxycM+aotRnTdWk9kgw2VoLcHDvexz/dSxwbtR1SYML2SBzQ5r2HIIK84IJLEoiiALz5Egfuu7Hp9UyVXuhy1tLjvjb/6jgvHT31dS1OGN1GGJoDiQzOHcuStjiIu/Ur062m1pp213unJLjPnkAegwsRHRgqXrEUMdlrJmiIvzgAj/AKpY4WEX09SGszVq8rK0YbPVMuzyaceS+esysnl3shZC0ge4zog8UTCKiKoiAiIgIiICIiAiIgLzm+i/8SvTCwmHwH/iUGUP0Y/xCzWEH0I/xC9EERVEEwmFUQTCYVRBMKYVVQC5xaAXEgdBlRVEG7Pq1qes6BxjDX43lsYBdjpkroatq0sdgMqOixwWjiNaC4cuYyuEiUN6vq9uvHExnDPCJ2OcwEjPUZUj1WzEyRgERY92/aYwQ09x2WkiUNxmqWmSseCw7YuDgtBBb2IWf6xaL4HjhB0GdmIwMDt6LnqpQyilfDM2WM4e07gfutubV7M0MsTmwhkp3O2xgc+/qtJEodEa5daAQY923YX8MbnDGOZXhDqViGqazeG6PnjewEtz1wtVEob8WtXYomMDoyWDDXuYC5o+xXjV1GzVfI5jw7ifO143B3qtZEobo1a0206dhjaXN2uYGDaR2wpPqlqeSJznNAhcHMY1oDQfRaaiUNhtyZt72wEcbfvzjln0WDLE0dr2lj9su7duHdeaJQ3rGr2rDQHcJoDg47IwNxHTKDWLeZS7hu4j+Id0YOHdwtFEobw1e17XJZ+Hulbte3YNrh9wvKa/PNHw3FobxOIA1uMFayJQ6J1y6WEb2B5G0yBg3keq032pX14YCRw4SSwY8yvJEoelqxJbsOnmIL3dcDC2YNXtQwNh+HIxnycRgcW+i0kShuVNVs1IjEwsfHnOyRgcAe4UGp2xdNvi/FIxkgYx2x2WoiUN6TVrT5YpPhM4TtzQyMAZ7rwFyYQzw5Gydwc/l1IOV4IlDabqVpssEjZNr4GcNhA8ux7r1Os2jNHM0QsczONkYHUY5rQRKG5T1SzUhMLOG+POQ2RgcAfssJb9iaKaN7mlszw9+Ggcx0WsiUNpupWmTQSteA6Bmxnu+X3XlbsvtS8R7WNOMAMbtC8kShMJhVEERVEEUWSIMVcKogmEVRBMJhVEEWE4+DJ+J/Zei85voyfif2QWD6Ef4j9lmsIPoR/iP2XogmEwqiomEwqiCYRVEEwiqIImFUQTCYVRBFUREMKKoiphFUQRXCIgKYVRBEwqiCYRVMIImFUQRXCIgKKogiKogiYVRBMIqiCJhVEEwmFUQTCKphBEVRBEVRETCYVRFTCKogmEVRBEwqiCLCf6En4n9l6Lzn+hJ+J/ZQWD6Ef4hei84PoR/iF6KgiIgIiICIiAiIgIiICIiAiIgIiICiqIIqiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICiqKAiIqCIiAiIgIiICIiAvOf6En4n9l6Lzn+jJ+J/ZQIPoR/iF6IiAiIqCIiAiIgIiICIiAiIgIiICIiAiIgKjGRnp5qIg2w2m4OO5wPkB/3WTGUnPLS54A57j5qIgwzT48eGv4eTuyfLyVaafHkyDw+WzqiKCyGltO0PBxyx/3KyYaOxu4EnHM8+qiIMA6q6UZY5rNp6dc+SxLa29wDnbeWDj/AHREGQ9kbNz4jo9vocrMCh1Jl9MIiDB3sokYW7ywH3m+ZVJqCZha15j57gev2REGZbSEW/L8k4DR5LAGoJCdriws5A+TsqIgz20OeHy/bksWCkRlxlBz08kRBrOxvO35c8lERVBERARERRERAREQEREBERAREQEREBERAXnP9GT8T+yIoP/Z\n",
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"YouTubeVideo(\"ydFmI6ZGLQ8\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Lecture on \"Spatial Lag\", you can ignore the last five minutes as they are a bit more advanced\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": [
"remove-input",
"hide-output"
]
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgICAgICAgICAgICAgICAgICAgICAgICAgIBwgICAgIChALCAgOCQcHDRUNDhERExMTCAsWGBYSGBASExIBBQUFCAcIBwgICBIIBwgSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEh4SEhISEhISHhISEh4SEv/AABEIAWgB4AMBIgACEQEDEQH/xAAdAAEAAgMBAQEBAAAAAAAAAAAAAQMCBgcIBQQJ/8QAThAAAQMDAgIGCAMDBQwLAAAAAAECAwQFEQYSEyEHFTFBUWEIFCJScYGR0jKSoSNC8BZDYrHBCSQzNTdyc3R1lLO0GCU0NlRWgoPR0+H/xAAXAQEBAQEAAAAAAAAAAAAAAAAAAQID/8QAGREBAQEBAQEAAAAAAAAAAAAAABEBEmEh/9oADAMBAAIRAxEAPwDxkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/hJ4qOE3xX9CxSE8AMOEnn+g4Sef6FgUCvgp5/oRwk8y4hQK0iTz/QcFPMsIRQMOCnmRwk8/wCPkWIvxJwBXwk8/wCPkFhTz/QzJAr4SeZCxJ5luABWkSeKjgoWYGAKuEnipPBTxX9CxEGAK+Enn+g4KeZngnAFaQp4r+hPBTzMsE4Aw4KeZHBTxX9CwYAw4KeK/oRwU8/0LEQYAr4TfFRwU8/0LMDAFaRJ5/p/8Dgt8/0LMEAYcFPMcFPFTNABXwU8yeCnn+hmAMOEnn+g4Sef1QzGAMOCnn+gWFPMzUlUArSJPMcFPMz5DkBXwU8yeEnn/HyLByAr4KeY4KeKma4JAq4SeY4SeZZ8yU+IFfBTzHBTz/QzVQiAYcFPP9BwU8zMcgMOCnn+g4Kef6GZAGPCTxUjhJ4r+hYEAr4SeZPBTxUzGAK+EnmOEnmWBQK+EnmOEnmWISiAR8iSMkgQMjATkAyE+AAE5CEYCAFaviETzGQoDAJIAlCMEkACUIySBH1JUBAIGT6Om7LU3GspqCjj4lTVSthhZ2Jucva5e5qJlVXyPXEfo76KsVNTs1Rd8V0rEc/NUtOzcqc0jjYudiLyyoHjcg9JdP3Qjp6gsjr/AKdua1FPFJFE+HjNqGqsjsZ3/iYqIvYp5vQCMBQgAjBOAgwBGCeZC4TtC+XPOETn3r2ATzHM6f0q9CN105baC51slO+Kt2tWOJyq6F72b2tVV5P5L2ocvAlADvvok9EFq1THdn3JajNHsSFIJVjT2mOcu7HbzRAOBfUjB+6/0jaerq4GKuyCqqIWZ5rsilfG3K964ah+FQJB6Ot3QnaJOj6TUzlqesW0ss6YlXg72KuE4fZjkeb2qqogE5HMEgQpCKhkRgCckEopIGOASAIBKIFQCAiDaSBHYEQkIoDJBkRgCPmFCISBGDIxUfQCceY5kfIj6gZIFUhFJAgZCgBkE4IwBKDHwBGABIwMAQSvyIwMAMjIwSieQELnyHPyCoQBJOCECoBOAhBIHQvRw1FTWrU9rrKxWsp0l4Ukj/wxcRNqSKvciKqc+7KnfvTV6HLpca1NR2xrrhTvpo2TQRLvkiZGiq2WFv77FRcqjeZ49Xs5ndOgr0kbtp1IqOqRblam4bwpHft4I+zEL1/E1E/dUDi0NZURRTUiSzRQyvT1im3Oax0kaqicSNex7VynjyOz9GHoy3q/2unutLWUUMFTuVjJVfvajHKz2sJjuOwekpoCy6l08msLE1kU8UXHmWNGsbUQov7VkzU7Jmrnn45P26TrZqboiWenlfDNHSVLo5I3K17HJI9UVrk7FA49qb0SdV0cMk8PqNfsTPCp5nJO9E5rtbIxG5/9Rxeg07XT17LXHTS9YPm9XSlemyTi97XI7GOSKufA6V0GdMd/ob1QbrjU1VPUVEUE9PUSOlY5kjkaqpu5tcme46v6aapp7Uth1Nb2Rtq5oZnuY5vsOkgRGNkc1P3ttU5M/wBFvgB8K1+htfHwI+e40NPUuajm06bnoiqmdrn8ufwQ4j0ldH1007X9XXKHbO7CwOiVZI6lqrtR0K4y7mqJjCLzOy6H0zr271cN8rbjNbqZ07Kri1tS6njeziNfw4qbPJityiIvdg3f+6IsRKTTlQitWfiypx2clXbGx6K13bjdzQD8fQl6LUktnqa67MjbcqunVLdSyrmOk3N9mWfHbKuUXHdhDj3TR0AXTStDFW1tTSTxSSpCjIFfuRzkVc+0nYegOgm/V0/RreauarqJKli1uyd8jnSs4bWoza9eaYwh44vuqblXRNZWV9XVMa7cjJ53yMR3ZlGuXtA6108aC1PbrNaqy83dK+hVWR0dPxHuWDfHuTkqJlUbyyuVP19Fvou329UcVwmnp7bS1DN8HGVXzSMX8L1Y3CMaqYVMrnn2Idc9Nv8A7n6f/wBLT/8AAQ45p+u1zq9lNBb3T09voYmU7JIpHUtJG1nsq58v865MLnHZgD4vTT0CXvS0SVdSsNVQOe1nrdOq4jc5cMSZjkyzKqiIqKqZU7V/c6f8BqD4xf8ADebpq20VdP0Y3OkuVfFc6mnglR1RG/jNRWSI9jOIvNzm8uZpX9zm/wCz3/8A9r/hvA8q6x/xjcf9frP+ZkPlL3n1dY/4yuP+v1n/ADMh8lycl+AHtuzf5HZf9n1H9bjxGzsT4Htyz/5HZf8AZ9R/W48RxryT4AbJ0c6JuOoK+O22yJJKh7Ve5Xu2RRRNwjpJHdzUVUTCIq8zu9b6Gt8bBuiuVDLVNbl1P7bW5x+FJOa/NWnFOizWl0stVM+0N3VtZD6pGrWOklajlVV4TG81f/Vg9G+j/ofWVNeKC6Xi6PpIHzJvo6yrV89W2Rq+w2DOEVVcnwwB5U1PY6q2Vc9DXQup6qnerJY3dy9zmqnJzV7lQ6l0aejdqa+0rK2KOnoqWREWF9dI6N0zF/nGRtY5dv8AnYybD6bjIo9bRSPRqMWKifMqpyVjZPaV3im1FOt+l0moqmhsc+mVqZLUtPmTqx2H71bHwFxH7Sx7d3Z34A5hXeh9fYGK+W6WtjURV9p7m5wmcJlOannavpnQTTQuVHOhlkhc5q5a5Y3qxVb5Lg9oa8grYOi/GpZZWXJiNdSK+VW1SSrJup2Pci5c7O1F8snihqr2rnPaqqvNVXmqr4qBOApjzMgIJIGQHzC/EYGQJHIEKA+Y+YIAlPiFIJUAiEEkAT9QnIdozgCdxKczHJIDAAyAwAMgMoNxAAyIUIMgSQQAJAQcgHyAIAkDJAEggkDe+gJ1s/lBRx3jhdXzpJBOs6Jwk4iYTcq8m8+WfM77qX0O4qmdZrJfadtDL7ccc7eO6NrlVURsrHpuYiKiJnK8uaqeRvofas+q7nRtVlLcayBipjYyd6NwiYwiKuE+QHsHpVrLVobRD9NR1jK641sT49jXt3udM7MsysRf2cTc8sn3eh7Sz710Xw2yOaOnfV09RE2WX8DVdI9EV3NPE8G1VTLNIsk0sk0ju2SV7nvXmq/icucc1PaWnpXx9D73sc5j20lS5r2OVrmqj3qio5vNFyB8Tom9FuS03CG5365UbaOgf6w2OJ6JxHR+0xz3uXkxF54+B8HpL6T7XqLpBsaSOiksdtqEp0fKiLDLI7crpOfJWcVtOiebfM873TVVzrI2x1NfVzxtbhI5J3qzCpjCtRfa7O8+R/HLu+AHt70lei6/Xu90lbT3KkbYIG08myWrSGClbC9r5H8JPZlXCIqL3YPoemZoae72W1T0tTRpTWuOWeonkma1rmcBqM4Lf5xXObjtTtPElTqKvlgbSy11XJTtziF88ix4XKKioq828+xSKu/V00EdLLWVMlNEmI4HzPWJqeG3OFT4getPQ2r6G66Su2mXVUdPWyuqVRsjmoqx1DE2SMaq5e1Hclx4HLOlH0bqjTlnqrpX3WmkWF0bIaaBvtSOkkSNqqquVce0nJE5HEaOqkhekkMkkMjfwyRPdG9O/k5q5xyP23q/11cv9+VlTU8kTE0r3tTHZ7GcZ+QHr/02Jo3aQsCI9rsS0+Ua5quxwEzyRT7+ptNz33QVpo9IVMMDVig48aVCU7pI0Ztlime32kfu7UXtxhTwvVV9RK1rJaieZjPwskle9jeWPZa5cIfqtV/rqRj46WsqqeORFR7IZnsaqLnPJF5Lz7UA916R6N6qPo9rdOR1VDPcnMnY9I6hvAimkcj+G+Xuxntx8jUfQUti2yXVFDPLCstNKyF7mPbsc9kbkdscq+03OefkeQqC/wBdTsmZBW1UTKjnO1kz2pKvYrn8+bsd/byPzU1fURK5YqieJX/jWKaRivXxerV9pefeB+zWK/8AWNw/1+sx5/3xIfJVeS/AyVV7VVVVcqqrzVVXmqqvepAHvvoc04l76M4LSyqhppKylmhSWRUckaucqZcxHIq/A5WnoY1v/mS3/wC7v/8AuPMlNdayJqMiq6qNidjI6iVjE+DWuwhb17X/APj63/epvvA9b9BXRZRaP1dTU90uNLXVFZQTvoJGs4cUb43xpI1Ue9U4qo9u3ya4+jN0WX3+Xcd+ulypOrIa7iUjpqzLuG9NsVPDAvKNVVccvBPHl4vmr6iR7ZJKmofIz8Ej5pHPZ/mPVct+R+q6agr6vZ6zW1U3C28PiTvds2Llrmpnk5F7+0D0n6e2hqtbit+4lP6msdPSxsSVHVEkznORUSJP3URc5Ov9GdovFv0Zbl0lieslbHLURXl9RhirGiSMp45F/YYd2NRETl2czyp6Pt8jrtV2fr+qmqqdsuIkqZHSRJUNaqU+5q+yibl7V8jvnpOp0hOu6tsbKpLU2KN1O+3rAjVVco5r97kXKYb3Y5oBwn0h4dczyNqNUQVfq8TncDaxPUYVd3t4XJOXLc/nz7eZyFD+gnQzUail0/d/5cxxR0jIHthWrSJJFjSN290uHK3HZhT+fkuze/hbuFvfw92N3D3Ls3Y/e24AgEDID6hXIMjIDKDcgyEAAIpKgQSYjIBUJAAKF8yEUZAkBSFwAJQDIBEUYM0aTtAr5hULFaY7QIIwZ7SFQDFEG0s2/MjaBhj4j5Ge0bQK8E7TPAa0DDBOPIyRBgDBWk7TJEJwBVt+IwWKgRAK1aMGat8gqZAwx4G9QdLN9jsi6dbURpa1Y+NYuCzibHqquTidveppO0jaBinLuJJwgwgEZIwZYJQDBHeQXJYqEYAwQlTLaNoGBKIplgIgGI5eBmrSMYAwwTgyUYAwwMGe0bQMW5RUVFVFRUVFTkqKnNFRU7FRTqOkvSC1dbIUp4LossTcIxKqNs7mNRMI1rnJnHLvycw2k7fgBuvSH0uaiv7ViuVxkkgVEzTxYigdhcormM/F3dpo6IZbQqeYGOEI7ewywSifEDFMkYM1TyJwBXtGFLFQxAhEIchkhOAMMEI0tVo2gVo0nBngYArwCzBGAMFJMsDb8AME+gwWbRgDLAwZ4GAlYYGDLBOAMMDBmAMMDBmRj4AY4GDLHwGPgBhgnBlgnAVXtJwZkoEV7VIwpbz/AIQFgrRBgy2k7RBhj4DBYBCq8DBYBBWqfAbfgWEKnkIVht+A2me0bRCsNvwIVCxWoSjRCq8EF2BgQqnA2lpHIgrVBgsAGGCUMsE4AqwTtLBgFV7RtLMfH6DH8YBVW0bSxW/H6EbfiCsdo2mWz4ko0FYbRtLMDAKr2jBnhRhQMNpO0ywowoGO0bTLCkbVAjAwZYUgCMEFiIpC8gMME4MsjIGOBgyUgCxiKSv8cicEK03FY7U8SFaWYMkavgWCnaZbEM0apLUVVRrWue9yo1rGIrnvcvY1rU5uXyAqVpG3/wDTadQ6Avlvpm1tdaaympHYxPIxFYiO7FftVVYnxQ1pUVUXbjOOS/1KQYbU8SEZ5nUtTaCt66Qt2pLbxElZUJSXiN8yvbG9y8Nr2o5PZVZFZyTHJxtHoydDFDqOkuFbdHviga9KS3qyVY99WrV7cfjTdgDgit+JLUNktui6ya+s0+qL64twWhfyVvsseqPlTOcIsaK5Pih9Xp1stqtV8qLZaeI6GjYyGZ73vldJUom6VURU5I1PDlz8gNHRviNp9nQ1uo66uhp62vZbqSRHq+seiKjHNaqtZz5IrlwnPxPk3DhxSSxtlSRjJpWRyIn+FjY9zWSYTuc1EX5lGG0Khv3o9aTor/e0oKxZFp/U6qdUjc6N3EiRuz2k549pTSbpE2GpqYUyjI6qoiiV2ebI5FY1N3Y5cIhB+fBB+5bdUeqrXLBL6mkvA9Z2/slmxnhova52PDkfi3tyic1VUyiIiquO3sRPApBGkohLXoqbkVMePZ9fA6V6PWhqG/1VxZWpMsVLbZqqFY3OjRZmbuaqn4k9lORNHNFG0iJVcnzcnyRVRDvvQV0FQ33T9xuVVI6KrmSZlkTe5iOkga5VkViL+2RXN7PIDgWBkmdrolcyZFjkY90cjVRcskYqtc13gqKikPcjcZXm7swmc/QtAYCyome32fxYaqo3u5qicuZL5moiKqphexcElEIgVDF0ze9ccs80VMp4pntQsjemVauUVMclRUXnzTkqdnNPqSDFQhDqmNOWfplf1QyWRvL+ljaiIqquezCdpRC8gTG5HdnPHJfFPincZOwiZXkhRhyCkMnY5cIvP4Kh2Dog0LY3WSu1RqN1XJbqapbQwUdEuySSaRWt4rnZRVRFciYyidvb3TRyAH6bqkPGl9VSRtM6oVKZJFzIyB70RiPVf30ap3z0iegBlloqe62ZZZ6RtPC640znLLLTrIxrkqEVefD580IPPQ5HSvRt0TRahvi0FfxHU6W6rqk4T1jcskPD2Lubzx7a8jnVYxscssSZXZNLGxMK5yoyRzW8k5quELBVgYPpaUo6arraWnqqptFSzS7J6tyZSBuFVFVF5IqqiJz8Si+wQU9RURQ1LaqCKZ7IalrVak7Gryka39PkIPyY+ZPI3f0f9MUd91HbrXVq9aWoWXipG50b12ROe3Dk5pzb3Gt6woY6O5XClj3cGmr6mmiV2XexFK5rGq/sV21O/mT4Pm4IOm33QlFBoi16gj4q3GsuktJL7aujdE3ibWti7EX2G9nM5mzDs4Xs5L3KnxTuLMIjBBj6wxFxuT+z69hnK9rcblxnkn8IIAPp6OoqSsuFLS1lY230szncase32YWoxzmrh3JUc5rW5/pH4bs2GCoqIY5kmjimkZFMiYSaNrsNkTHLmgiRUCWqnNOaKnaioqKnfzRSt1RH730Rf7EEIzwviRjzLETKdoRoisEQhWluPMK0s8FOCULdpGCQVbfIY8i5U+BC/IsFXyCliJ5hUAswShdgYAoVCS3aTgCnl5nVfRJW3pq63LcOGjNk3q6zfg9bVP2eM8t+N2DmGArexUVUVqo5rmrtc1zVy1zXJza5FROY0f1S6Q3USWquWv4XqfqsvF4u3hq3Yvvcs+B/Kqbh75ODngrLKsO7OeCsjuFnPP8ABtPu3rV95rqdlJW3WtqqSPG2nklXZhOSI/HORPifE2kwdo9FevhrVvGkqxyer32kldSo5fw1sTFX9ki8kkVE3Z/oZPs9Ol3k0lR6Z03QvT1i2OZdLgseE4k7XoqI5Wrz3LvXBw3Td1mt1dR3CnVUnoqhlRGiLt37F9qNV7mubuavk5T9eutS1N6uNVdKxGtnq3NVzGrlsbWt2oxqr2oIPWlfbKCmqarpKYsfq9RYYpIG97rnIxYnuc3GWrtZAiY58lNe0jS0tr0zQXda2z0d0v0r6uouV3h9ZRVkc6VaeNF8GqqYynJDz5Nryufp+LTSonqMNU6qbIjl3u3SOlWBze9m536IbB0f9LTrfbVslytVNe7Skiyww1CoklO/O5EY5yKit3CDrun6TTdfrmyz251srFqLfWdZwUrGvpPWo4VVsqRqm1ucr3dyH5+iy0pHbLnVWG02y53pL/Ww1cVWkSrBSNrJUiRrZOTGcPavLuXvOaUvTOtPeqG70tlo6OC3U9RTwUNOqN3tnZsWSWTbzciInI6zoOqitmmW1bbVcL3/AClqZ66ojtqtjdQOler+E6VntKqbsc/Ag+7TXqJ3SBS0UTaFGU1knlqIKSKNrYqpzW8WJZo/xtxjl3fM03R2o2aqptXWq4W+gZBQxVElA6CnYyWmdG+VqOSTGXPzGi7j4Wtqal0NeLZe7dDUSOutvqUltlfNmqpnycPc58i5Ve1E5r4HOejvpEls0t4lZTJOt5jljeivRvA4rnvVU97CyL9AO1J0jy2/o2s9fT0FBl1dPRcCSBskSMifLCkibk/wqozO7typ+7RVtobHpi23BlVZKGvvMj6qeuucCStcjnLKtLCnY1Earkxnkid5xzo76Wm260NsVys9LeaCCd9VSNldsdFUPcsi70XKObvc5T9+num9zKWe3XSyUVztUs7qiCjcqJ6k5y7kjic5MOYi888hNHRKfTGlr/rC2vpJKGqi9Qlq7nTUGfVpqynwrF2IiN2LzynwPqdCfShVXm6aioXUdBSUVNb61tNFTUzI5ImxrJFh0ic1ztzjCdpw+8dLNW650NytVDSWZLc1Y6emp0RzJWKvtNqVRE3IrUxhPE2y29P9PAtZURaXoqa4V8EsNTVU0qNR/FRWudtVue/OBBxTTNpmr6imoKdN0tZUpTxomM+3IqOdz8G7l+R7Y1Ha6O31enKal1HbrbFppGceikc1HTSuYjJuIiOTaqxvkTnnm7PceSeibViaeuUdzSlbWywxzNgie5GtZJL/ADiqvaqJy+Z8G/1j6+rqq6qw6ernknkXmu1ZFzsRV7URMJ8iweotR2q32XXMVRJFTVFh1bA5jZFjbJCyomTG+NVymd6oucfv+R8LUuh4dFWK+LUx08lwvVxdb7S+VjXrFQu5pKiP/Dhski7m+CHJrj0iT1OnaTT88CPdbqhJqC4b04kLWuVzYlbjKNRF2pjwQjpb6Rq3U625a5qMbb6P1VrGu3NkkXG+o8lVGs5L4Emj0xcKa1aYhs9viq9P0FMtLDNXR3OBJKm4JI1qzOSVU5J7S4Xn3GodFVv08l/1k+3R01faI7UyqgRGtfEyVyq98cO5PZZv3JyNCtXTe19FSUd8sNHfH29jWUVXM5rZUaxMMbKjk7kRqZQ+XaumGeCtvVcltpo1vNC2hWmp3cOGljYm1rm8vbdzLBsemulqsvNbQQQaYtdVWQsk9SjjiYjGtdtTiVKuZhIo29/mbd0422Gv0pDcLqy2MuNFd4KWpntO3ZHFJMyKaJ72Im5zY5HcvFEOG9EOuJ9N16V0MMdW19OtLUU8i7eJC7kux+Msd2/U6Jbek6hvFN/JXqSltlFdq9iR1CTbvVpZnpmociph06L2d2cEg7tYqJKGpayntFlj0rFa+NHdHtgfKsqR7kcqvTL37vE5/wBF9LRQ6frtUPqbRTXG6XOoghr7hTI6lpo4JXQRJFAnJiubFuxlPxLzNs1jbKO8V0GmqyxXxlLTxtpm3iCbhUj2MjRWzPjYqNWJVTH9mDgel9eyaUqLzp6Smpr9ZPXJYnQTqmMtXHEiVUVEcqYRydmUVQPoekpVWKsgtlZb6u2VF3RViuXVnsQzR7V2zLGiYRd+PqfN9F/SNFdbpXS3CJKintFvfXpSL+Gpkavsten7yJ4HwekjXUN2jpqWjs1JZqKkesjGU/OWVzmqmJXIiJt9pVx5IfM6P9W11huEdyt728VjVjlikysNRC78cUrU7U8F7iwdv6K9fUWs7i7T9wsFrio62Cd0MtHE1lTSLG1FjdvYxFymU557UPqLrOei6PbmxtPRSdX3t9nZmBmySFkyQNme3sWbaqLu8UyaFN08NgZUy2bTlvtFyrWObU3Bio9zVfne6FEai5yq9viaOzXlQmnKjTroeIlTcm3GSsc9N29Hte5qs7VVVZ2+ZINLkaibf9Iz9ZEX+09ZdN/SXNpzVlBI5i1NuqrDQw3Gjd7TJadctc5rF5cRqOX4oeUZWKqcu1FRyeGWqjk/qNz6Xtezakr4K6WmbSrBQw0SRo/fuSL99V7s+Bdwekeh3o2paLU7L/Y3pUaeudouDonMVFSiqH8F60zk7Wou1+Exy2uTwNb6JbJQ2vTVTe0ntVJcK+6VcKXC6RceGnjjqHsZExvYj1xzTKc1OWdCfTLctKtqaeCJtZQ1TX5pXv2pDK5FRZYl7ERc80K+jjpZntVLV22tt1Nd7TWzyVElFOqJwJZVVzlhcqYVFXHb5kg6lcv5O3DVGk56Ka2VtdPLNDeIqFjVo5NkD3RzOiVMZV38cizQNkputNaS2+3UFdfaWsa23UNUkaRNpnMbvdFE72M7tydncnYcxq+l1vWNprKKxUdvprNLJLBS06okk6yx8NUlkRMYRFVcHUehO4tbQ3/Vy0FTdJ7xWeqyWmgVqS0sTFX9osq+0iqrlXl3YA3ilu8jdT6Mop4LdSV0sNTPcqKjhiVYJUgdsXjsxtRUym3v+Rqug9TJqS+6n09XUFvS3Qw3BYEjpmJNHJTvc3i8btc9yoq58zX9V01HpqSza3pKStpauSqmims90nV87+JHIxro3uVVRqduOzGTl3R10nT2a83O9NpGzSXNlWx0CvRqRetvc9VR3ft3YA69bNZSac6ObXUU9NS1UnXVZTR+uRpIyPEk37RGqmN+GY+ZN40lbdVP0XdZaKGglvM8kNyipsQsqI4IpZssaiJu3LCieOHKc70j0xw09obZLpYKa7UUVVNWQb5Nqtlne+RdzXJjlvVMp3HxNb9LF2uVbQVkHCtcdpVq2qjpUTg0u1MZXl7blblF8lUZg6dP0tUMd+XTrdM2tbS2t6q4Xq7VrFj38FZUVGZ3Z59p93o40HbLLqTWFI6COroqe0x1dPDK1siwtk40iQ5dnCorVTPgqGif9ICNZUuK6Xti35rdqXLKbd2MLNs27t/NVx5mo6Q6Va+hq73XVETa6pvtMsFQ/ckaRKu5Ec1O9qNciIn9EDfuibpFTU2pdNUNVaLbBBT1NVIzgwtVZI0oamNkMzVZhzUyjvi1FNptdRTWrS+qrmy3UNRUUmoqhlN6xBG9sX7ZWsVuW/hb7vYedui3Uklgu1Bdo4kqX0KyqkKrsSTixSRL7XdjiZ+Rs1d0qVE1lu9mdRtay73F9xdOj0VYVfIsnC2/veGS6Oi6wbb7/prSmobrT01JNPeFt9fLSxpAyWmZNJE5ZEZ2NXhN+CKvM6rWcW2pelmtNjt9go7c51puKR08j3vSP9iu1UzIqr2p8O3PLz30W3vrqlsGip0ZS08F0lrvXlcjnS+3JUcFsa8t6q/HPwU7dq+z0Wq6+otVfY73bW00UrY7os2yic6maqRSPhRduxcbk7fkQeNpqh875J5MI+eR8r9rdjdz1yu1qfhb5GB+mop+FLPDvbLwJ5YUlb+GRI3qxHt8lwYbTQpBft8htTwAoVBgv2p4DangBQqDahftTwCt8hRRtQIhdjyGPICzhkK0t2jaUVI1ArS3aNoFez4mKMLto2gU7SHIiIqqvJEVV+Ccy/aFYBfcLNWU8UE9RSzQ09Umaad7f2U6Y3fs3IvNcZXHkY2a0VdbKsFFTTVczY3Sujhbuc2Jv4nuyuEah2fQTF1Lou5WJ3t3LTr0uNszhXOp0y5Y2JnK+xxGKq8k3Ifv6GKCSzaTrrsmyG6aknbarW6VdqMjeqxJJuTmxmVVyqSjz/s5qneiq1fJWrhU+qKfrW0VaUiV600yULpOE2rVP2Ky5xw0dn8WTqt36BJYKCqqKC+W26VVtj41xoIHIkkDERVeqPRVy7KO7U54PsU1GtT0YW2na7a6o1FBC1yplGrLU8NHKnfhXIvyFHB9h97S2s7xakcy23Oqo4383RRua6LPPKtjla5rFXPciH37/wBGlRR6og0s+pjfUVD6djKtI8Mb6xGsiK6PPPGMdp+219DlxqbxdLYlRTQUtml2V91qMsgjZsa/c1ne/DuxVQDQbzcqqumdU1tVNV1D+2Wd6vcieDU7GN5JyaiJyPx4Oka46JaqhZRVNurqS+UFfUsooaykXDI6qRcMZNjLWRqv72fBO8+h0g9Cy2alnkffbfUXGkgbUVdqROHOyNU3Lwuaq9cIuOXPAHJ8DBc1qKiL4k7EKKNoVpfsQbEAo2jaX7EGxAKNo2l+xBsQCjaNpfsGxAKNvkNnZ2oqKioqLhUVFyjmqnNFReeUL9iDYgGxr0jai9V9S67r/VtnD2cRu/Z2bePt4vZ37smq7e1eaqqqqqq5c5VXKucq81cqqq5Uu2DYQU7RtLtg2FFG0bS/ag2oBRtG0v2oNqAU7PMbPMu2oRtQDDB9TTGpLja5HS22uqaF787+C9OG/s5vieisc72U9pUyfP2oNqAfu1LqCvucqT3GtqK2VPwumflrOWPYjaiMYuO9EyfLVvxLtqGOCCvb8Rt+JZgYKMUQhceZaiIFRAK9qd/9Y2GZOECK2I5Fa9rnMe1Ucx7HKx7HJ2OY9vNrvNDZ7j0h6hqKb1Oe8176bDWrHxGsVzW4w10sbUkcnJM5dz7zXUQbSQUNZhMInInBdtG0qqAhftG0gowFQv2jBRSnwJ2lu0bQKdo2qXbRtAy2kq0uwRtJUqnao2qXbRtFFW0hWqW7fMbRRVsUbFLcE4FG09Cuq3WO/wBBXLzp5ZEoq5mURr6WqVInK7Pc1zmu+DV8TfvSevlDcNQWiw0kjaWzW50EKyxqiMjdWO9p7V7PZZ39244urTHhIqKjueeS555+Oe0K9laY0hBbFv8AarfR0FNRz2nhUNatSySsucj4lWSSZ6rnajn9/mcsikbbuj62x1MkaPo9T0z52se16o2Gra96pjtREavM4SkX4V4k+WIqMXjS5Y1e1rF3ey1cJyTwQy2J4vVPdV7lZ8dmcbvMQerNQaFluOuLXquGtoEtD/UZGSuqG8Rz44+FwUZ7y57clmlNQ0sl911ZWT0jK+vr0nofXMLS1GynhYsTnZ9rm3sTxPJiwJtRm6RGIqK1iSPRjHIuUcxiLhrs96EvjauM7lVFyjlc5Xo73t+dyO885JB6R6TLZfYbS233CssNsiqLjROgjt78y8dJ2K2pzlNrWORrl8kPp9KenJKjS9xn1Stsfc7dBmz3eilbx657WZiZIxOaqq4RU5op5adEjub1fIuFbmV7pFwvaiK9VwnIxdFnbudI9GrljXyPexi921jlVG/IorgVVa1XJhyomU8FxzQtRpaioQpRUqGOELdoRoRXhCMIW7Rt8wK0BZt8xt8wKsISWbfMbfMCslDPaNoFZltMkaTtArx5jHmWbBsArwTtXzLNg2AVq1UIT5lu0naBT9R9S3aTtApRuSdqlmwlG4IKVT4kYL1YEb8Aqjb8SMfE/RtI2/AUUonxIx8S/CEbU/jJRTgnCeZdwyUYBU5mDA/QrckcNAKkaFQu2eZjw/MIpJVC7hmWAPztRVJ2KX4IAp2qYn6TFWJ8AKMeRLW5LtvmpG1fFQPndew+7J9G/cOvYfdk+jfuNcBz60jY+vYfdk+jfuHXsPuyfRv3GuAdaRsfXsPuyfRv3Dr2H3ZPo37jXAKRsfXsPuyfRv3Dr2H3ZPo37jXAKRsfXsPuyfRv3Dr2H3ZPo37jXAKRsfXsPuyfRv3Dr2H3ZPo37jXAKRsfXsPuyfRv3Dr2H3ZPo37jXAOljY+vYfdk/K37h17D7sn5W/ca4C9aNj69h92T8rfuHXsPuyflb9xrgHWjZOvofdk/K37gt+h92T8rfuNbA60bH17D7sn5W/cOvYfdk/K37jXAOtGx9ew+7J+Vv3Dr2H3ZPyt+41wDrRsfXsPuyflb9w69h92T8rfuNcA61I2Pr2H3ZPyt+4dew+7J+Vv3GuAdaRsfXsPuyflb9w69h92T6N+41wDrSNk6+h92T6N+4dfQ+7J9G/ca2B1qtk6+h92T6N+4dfQ+7J9G/ca2B1o2Tr6H3ZPo37h19D7sn0b9xrYHWjZOvYfck+jfuHX0PuyfRv3GtgdaNk6+h92T6N+4dfQ+7J9G/ca2B1qRsnX0PuyfRv3Dr6H3ZPo37jWwOtI2Tr6H3ZPo37iOvYfck+jfuNcA60jY+vYfck+jfuJ69h9yT8rfuNbA61Wydew+7L9G/cOvYfdl+jfuNbA60bJ17D7sv0b9w69h92X6N+41sDrRsnXsPuy/Rv3Dr2H3Zfo37jWwOtGx9ew+7L9G/cOvYfdl+jfuNcA60bH17D7sv0b9w69h92X6N+41wDrRsfXsPuy/Rv3Dr2H3Zfo37jXAOtGx9ew+7L9G/cOvYfdl+jfuNcA60AAZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//2Q==\n",
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"YouTubeVideo(\"MQACCcfTpXc\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## Further readings\n",
"\n",
"If you liked what you saw in this section and would like to digg deeper into spatial weights, the following readings are good next steps:\n",
"\n",
"```{margin}\n",
"The chapter is available for free [here](https://geographicdata.science/book/notebooks/04_spatial_weights.html)\n",
"```\n",
"- Spatial weights chapter on the GDS book (in progress) {cite}`reyABwolf`.\n",
"- For a more advanced and detailed treatment, the chapters on spatial weights in the Anselin & Rey book {cite}`anselin2014modern` are the best source."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}