
1

Lab 3 - Creating, manipulating, and integrating web geospatial
data

In this lab, we will explore and familiarise with some of the most
common data formats for web mapping: GeoJSON and Mbtiles. To
follow this session, you will need to be able to access the following:

• The internet
• QGIS. Any version should work in this context, but if you are

installing it on your computer, QGIS 3.10 is recommended
• A Python installation such as the “Geographic Data Science Stack

2019” in the University of Liverpool computers, or the gds_env
Docker container in your own machine (see here for instructions)

GeoJSON

To get familiar with the format, we will start by creating a GeoJSON
file from scratch. Head over to the following website:

https://geojson.net

In there, we will create together a small example to better under-
stand the building blocks of this file format.

We will pay special attention to the following aspects:

• Readability
• Coordinate system
• Ability to add non-spatial information attached to each record
• How to save it as a file

https://qgis.org/en/site/
http://darribas.org/gds19/software.html
https://geojson.net

2

With the files from the exercise at hand, we will then learn how to
open them in Python. Start Jupyter Lab session and open a new note-
book so you can keep record of what you do (rename it to something
you will remember, like web_mapping_lab_03.ipynb).

Then let’s start by importing geopandas:

This ensures plots and maps render in the notebook
%matplotlib inline

import geopandas

Now, place the .geojson files you have created in the same folder
where you are storing the notebook, or somewhere reachable. For this
example, we will assume that the file is called test.geojson and it is
stored in the figs folder, accessible from the same location where the
notebook is. We can read the file as:

db = geopandas.read_file("figs/test.geojson")

We can inspect the file to see what it contains:

db.head()

Nombre geometry
0 Roxby Building POINT (-2.965112 53.401534)
1 None POINT (-2.96604 53.401377)
2 None LINESTRING (-2.96603 53.401406, -2.965879 53.4...

If you are familiar with GeoDataFrame objects, this is exactly it,
read straight from a GeoJSON file (if you need a refresher, you can
check out Lab 3 of the GDS’19 course).

Because once read, it behaves exactly like any of GeoDataFrame
objects, we can operate on it and tap into the functionality from
geopandas. For example, we can inspect the Coordinate Reference
System (CRS) in which it is expressed:

db.crs

{'init': 'epsg:4326'}

Using some of geopandas’ functionality. We can reproject it to
express it in metres:

db_prj = db.to_crs(epsg=27700)

Let us pay a bit of attention to how spatial data is stored in a
GeoDataFrame:

http://darribas.org/gds19/labs/Lab_03.html
http://geopandas.org/

3

print(db.geometry[0])

'POINT (-2.965112 53.401534)'

This is called “well known text” (wkt) and is a representation that
spatial databases like PostGIS use as well. Another way to store spa-
tial data as text for storage or transfer, less (human) readable but
more efficient is the “well known blurb”(wkb):

db.geometry[0].wkb

b'\x01\x01\x00\x00\x005\xd1\xe7\xa3\x8c\xb8\x07\xc0\xb4\x1dSwe\xb3J@'

But the underlying data (point coordinates) can also be extracted
directly within Python. If we want to pull out the x coordinate for
each point, we can access it under geometry.x:

db.geometry[0].x

-2.965112

Another benefit of reading data into geopandas is we can use its
analytical capabilities. For example, we can calculate the length of line
in db:

line = db_prj.loc[2, :]
line.geometry.length

88.22374412204398

Given the the line is expressed in metres (check out EPSG:27700),
we can conclude the line spans about 88m.

Once we are happy with the data as we will hypotehtically need it,
we can write it out to any other file format supported by geopandas.
For example, we can create a Geopackge file with the same informa-
tion:

db_prj.to_file("figs/test.gpkg", driver="GPKG")

Tilesets and Mbtiles

In this section we will dive into the concept of tiles to understand why
they have been so transformative in the world of web mapping. We
will learn how to prepare a map that is styled in QGIS and then saved
as either an .mbtiles file of a structured folder with tiles that allows
to serve it over the web in efficient ways. Finally we will explore the
tileset built using the JavaScript library Leaflet.js.

Before we get started, let’s get all the required pieces together:

http://epsg.io/27700
https://leafletjs.com/

4

1. Fire up QGIS 3
2. Make sure you have the XYZ Tiles plugin installed
3. Download OS GeoData Pack from CDRC (NOTE: you might have

to register) and unzip it in an accessible folder

Build your own basemap
Basemaps are maps that provide context to more specific spatial

data you might want to present. For example, if you have a set of
points that represent events in space, it might be hard to understand
their distribution unless you put them in the context of a more com-
plete geography. A basemap is a quick solution in this case.

Explore the layers provided in the GeoData Pack and select those
you want to use for your basemap. Once ready, go ahead and add
them as layers in QGIS. Tweak colors, transparencies, linewidths, etc.
until you get a map you are happy with.

Create a tileset for your map
Once ready to build the basemap from your created map, head over

to Processing --> Processing Toolbox and select the TilesXYZ
--> Generate XYZ Tiles. You can start with the Directory option.
Pick parameters and, when everything is ready, hit Run. Depending
on your settings, this will take some time, be patient.

https://github.com/lutraconsulting/qgis-xyz-tiles
https://data.cdrc.ac.uk/dataset/cdrc-2015-os-geodata-pack-liverpool-e08000012

5

When finished, QGIS will have created a folder with a particular
structure, that contains all the tiles required to serve your basemap.
You can peak into them to find they are really just images of different
parts of your map at different zoom levels.

Explore your basemap with Leaflet.js
If you store your basemap in a folder, QGIS will also generate for

you a HTML file with a bit of JavaScript code that will allow you to
explore the tileset in a browser. Play with it a little bit and familiarise
with the look and feel of it.

6

If you feel adventurous, you can also peak into the code that makes
the web map possible. To do that, you will need to either open the
HTML file on a text editor, or inspect the source code from the
browser (in Firefox, for example, this can be accessed through Tools
--> Web Developer --> Page Source).

Create a .mbtiles file for easy transport
Finally, you can recreate the process above but in this case choosing

the MBTiles instead of the Directory option. This will make QGIS
generate the same tileset but, instead of storing it directly on a folder,
it will save it as a SQLite database in with the .mbtiles format.
This is easier to move from one environment to another and is also
supported by most web mapping platforms, such as Mapbox.

	Lab 3 - Creating, manipulating, and integrating web geospatial data

