

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.9

Table	of	Contents
Introduction

Distribution

About	the	authors

Install	guide

Outline

Data

Part	I

Spatial	data	processing	with	PySAL

Geovisualization

Spatial	weights	in	PySAL

ESDA	with	PySAL

Space-time	analysis

Part	II

Points

Spatial	clustering

Spatial	Regression

Development	notes

2

Geographic	Data	Science	with	PySAL	and	the
pydata	stack
This	two-part	tutorial	will	first	provide	participants	with	a	gentle	introduction	to	Python	for
geospatial	analysis,	and	an	introduction	to	version		PySAL		1.11	and	the	related	eco-system	of
libraries	to	facilitate	common	tasks	for	Geographic	Data	Scientists.	The	first	part	will	cover
munging	geo-data	and	exploring	relations	over	space.	This	includes	importing	data	in	different
formats	(e.g.	shapefile,	GeoJSON),	visualizing,	combining	and	tidying	them	up	for	analysis,	and
will	use	libraries	such	as		pandas	,		geopandas	,		PySAL	,	or		rasterio	.	The	second	part	will
provide	a	gentle	overview	to	demonstrate	several	techniques	that	allow	to	extract	geospatial
insight	from	the	data.	This	includes	spatial	clustering	and	regression	and	point	pattern	analysis,
and	will	use	libraries	such	as		PySAL	,		scikit-learn	,	or		clusterpy	.	A	particular	emphasis
will	be	set	on	presenting	concepts	through	visualization,	for	which	libraries	such	as		matplotlib	,
	seaborn	,	and		folium		will	be	used.

Introduction

3

Introduction

4

http://pysal.org
http://geographicdatascience.com

Distribution
	[URL]			[PDF]			[EPUB]			[MOBI]			[IPYNB]	

License

Geographic	Data	Science	with	PySAL	and	the	pydata	stack	by	Sergio	J.	Rey	and	Dani	Arribas-
Bel	is	licensed	under	a	Creative	Commons	Attribution-NonCommercial-ShareAlike	4.0
International	License.

Distribution

5

http://darribas.org/gds_scipy16
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://http://sergerey.org
http://darribas.org
http://creativecommons.org/licenses/by-nc-sa/4.0/

About	the	authors

	Sergio	Rey	is	professor	of	geographical	sciences	and	core	faculty	member
of	the	GeoDa	Center	for	Geospatial	Analysis	and	Computation	at	the	Arizona	State	University.
His	research	interests	include	open	science,	spatial	and	spatio-temporal	data	analysis,	spatial
econometrics,	visualization,	high	performance	geocomputation,	spatial	inequality	dynamics,
integrated	multiregional	modeling,	and	regional	science.	He	co-founded	the	Python	Spatial
Analysis	Library	(PySAL)	in	2007	and	continues	to	direct	the	PySAL	project.	Rey	is	a	fellow	of
the	spatial	econometrics	association	and	editor	of	the	journal	Geographical	Analysis.

	Dani	Arribas-Bel	is	Lecturer	in	Geographic	Data	Science	and	member	of	the
Geographic	Data	Science	Lab	at	the	University	of	Liverpool	(UK).	Dani	is	interested	in
undestanding	cities	as	well	as	in	the	quantitative	and	computational	methods	required	to	leverage
the	power	of	the	large	amount	of	urban	data	increasingly	becoming	available.	He	is	also	part	of
the	team	of	core	developers	of	PySAL,	the	open-source	library	written	in	Python	for	spatial
analysis.	Dani	regularly	teaches	Geographic	Data	Science	and	Python	courses	at	the	University	of
Liverpool	and	has	designed	and	developed	several	workshops	at	different	levels	on	spatial
analysis	and	econometrics,	Python	and	open	source	scientific	computing.

Acknowledgements
This	document	has	also	received	contributions	from	the	following	people:

Levi	John	Wolf.
Wei	Kan.

About	the	authors

6

http://sergerey.org/
http://darribas.org

About	the	authors

7

Install	guide
The	materials	for	the	workshop	and	all	software	packages	have	been	tested	on	Python	2	and	3	on
the	following	three	platforms:

Linux	(Ubuntu-Mate	x64)
Windows	10	(x64)
Mac	OS	X	(10.11.5	x64).

The	workshop	depends	on	the	following	libraries/versions:

	numpy>=1.11	

	pandas>=0.18.1	

	matplotlib>=1.5.1	

	jupyter>=1.0	

	seaborn>=0.7.0	

	pip>=8.1.2	

	geopandas>=0.2	

	pysal>=1.11.1	

	cartopy>=0.14.2	

	pyproj>=1.9.5	

	shapely>=1.5.16	

	geopy>=1.10.0	

	scikit-learn>=0.17.1	

	bokeh>0.11.1	

	mplleaflet>=0.0.5	

	datashader>=0.2.0	

	geojson>=1.3.2	

	folium>=0.2.1	

	statsmodels>=0.6.1	

	xlrd>=1.0.0	

	xlsxwriter>=0.9.2	

Linux/Mac	OS	X

1.	 Install	Anaconda
2.	 Get	the	most	up	to	date	version:

Install	guide

8

	>	conda	update	conda	

1.	 Add	the		conda-forge		channel:

	>	conda	config	--add	channels	conda-forge	

1.	 Create	an	environment	named		gds-scipy16	:

	>	conda	create	--name	gds-scipy16	python=3	pandas	numpy	matplotlib	bokeh	seaborn

scikit-learn	jupyter	statsmodels	xlrd	xlsxwriter	

1.	 Install	additional	dependencies:

	>	conda	install	--name	gds-scipy16	geojson	geopandas==0.2	mplleaflet==0.0.5

datashader==0.2.0	cartopy==0.14.2	folium==0.2.1	

1.	 To	activate	and	launch	the	notebook:

>	source	activate	gds-scipy16

>	jupyter	notebook

Windows
1.	 Install	Anaconda3-4.0.0-Windows-x86-64
2.	 open	a	cmd	window
3.	 Get	the	most	up	to	date	version:

	>	conda	update	conda	

1.	 Add	the		conda-forge		channel:

	>	conda	config	--add	channels	conda-forge	

1.	 Create	an	environment	named		gds-scipy16	:

	>	conda	create	--name	gds-scipy16	pandas	numpy	matplotlib	bokeh	seaborn	statsmodels

scikit-learn	jupyter	xlrd	xlsxwriter	geopandas==0.2	mplleaflet==0.0.5	datashader==0.2.0

geojson	cartopy==0.14.2	folium==0.2.1	

1.	 To	activate	and	launch	the	notebook:

>	activate	gds-scipy16

>	jupyter	notebook

Install	guide

9

http://repo.continuum.io/archive/Anaconda3-4.0.0-Windows-x86_64.exe

Testing
Once	installed,	you	can	run	the	notebook		test.ipynb		placed	under
	content/infrastructure/test.ipynb		to	make	sure	everything	is	correctly	installed.	Follow	the
instructions	in	the	notebook	and,	if	you	do	not	get	any	error,	you	are	good	to	go.

Support
If	you	have	any	questions	or	run	into	problems,	you	can	open	a	GitHub	issue	on	the	projec
repository:

https://github.com/darribas/gds_scipy16

Alternatively,	you	can	contact	Serge	Rey	or	Dani	Arribas-Bel.

Install	guide

10

https://github.com/darribas/gds_scipy16
mailto:sjsrey@gmail.com
mailto:D.Arribas-Bel@liv.ac.uk

Outline

Part	I

1.	 Software	and	Tools	Installation	(10	min)

2.	 Spatial	data	processing	with	PySAL	(45	min)

a.	Input-output

b.	Visualization	and	Mapping

c.	Spatial	weights

3.	 Exercise	(10	min)

4.	 ESDA	with	PySAL	(45	min)

a.	Global	Autocorrelation

b.	Local	Autocorrelation

c.	Space-Time	exploratory	analysis

5.	 Exercise	(10	min)

Part	II

1.	 Point	Patterns	(30	min)

a.	Point	visualization

b.	Kernel	Density	Estimation

2.	 Exercise	(10	min)

3.	 Spatial	clustering	(30	min)

a.	Geodemographic	analysis

b.	Regionalization

4.	 Exercise	(30	min)

5.	 Spatial	Regression	(30	min)

Outline

11

a.	Baseline	(nonspatial)	regression

b.	Exogenous	and	endogenous	spatially	lagged	regressors

c.	Prediction	performance	of	spatial	models

6.	 Exercise	(10	min)

Outline

12

Data
This	tutorial	makes	use	of	a	variety	of	data	sources.	Below	is	a	brief	description	of	each	dataset	as
well	as	the	links	to	the	original	source	where	the	data	was	downloaded	from.	For	convenience,	we
have	repackaged	the	data	and	included	them	in	the	compressed	file	with	the	notebooks.	You	can
download	it	here.

Texas	counties

This	includes	Texas	counties	from	the	Census	Bureau	and	a	list	of	attached	socio-economic
variables.	This	is	an	extract	of	the	national	cover	dataset		NAT		that	is	part	of	the	example	datasets
shipped	with		PySAL	.

AirBnb	listing	for	Austin	(TX)

This	dataset	contains	information	for	AirBnb	properties	for	the	area	of	Austin	(TX).	It	is
originally	provided	by	Inside	AirBnb.	Same	as	the	source,	the	dataset	is	released	under	a	CC0	1.0
Universal	License.	You	can	see	a	summary	of	the	dataset	here.

Source:	Inside	AirBnb’s	extract	of	AirBnb	locations	in	Austin	(TX).

Path:		data/listings.csv.gz	

Austin	Zipcodes
Boundaries	for	Zipcodes	in	Austin.	The	original	source	is	provided	by	the	City	of	Austin	GIS
Division.

Source:	open	data	from	the	city	of	Austin	[url]

Path:		data/Zipcodes.geojson	

Data

13

https://www.airbnb.com/
http://insideairbnb.com/
http://creativecommons.org/publicdomain/zero/1.0/
http://insideairbnb.com/austin/index.html
http://insideairbnb.com/get-the-data.html
https://data.austintexas.gov/Geodata/Zipcodes/23x8-agw7

Part	I

Part	I

14

Spatial	Data	Processing	with	PySAL	&
Pandas

	IPYNB	

#by	convention,	we	use	these	shorter	two-letter	names

import	pysal	as	ps

import	pandas	as	pd

import	numpy	as	np

PySAL	has	two	simple	ways	to	read	in	data.	But,	first,	you	need	to	get	the	path	from	where	your
notebook	is	running	on	your	computer	to	the	place	the	data	is.	For	example,	to	find	where	the
notebook	is	running:

!pwd	#	on	windows	!cd

/Users/dani/code/gds_scipy16/content/part1

PySAL	has	a	command	that	it	uses	to	get	the	paths	of	its	example	datasets.	Let's	work	with	a
commonly-used	dataset	first.

ps.examples.available()

Spatial	data	processing	with	PySAL

15

['10740',

	'arcgis',

	'baltim',

	'book',

	'burkitt',

	'calemp',

	'chicago',

	'columbus',

	'desmith',

	'geodanet',

	'juvenile',

	'Line',

	'mexico',

	'nat',

	'networks',

	'newHaven',

	'Point',

	'Polygon',

	'sacramento2',

	'sids2',

	'snow_maps',

	'south',

	'stl',

	'street_net_pts',

	'taz',

	'us_income',

	'virginia',

	'wmat']

ps.examples.explain('us_income')

{'description':	'Per-capita	income	for	the	lower	47	US	states	1929-2010',

	'explanation':	['	*	us48.shp:	shapefile	',

		'	*	us48.dbf:	dbf	for	shapefile',

		'	*	us48.shx:	index	for	shapefile',

		'	*	usjoin.csv:	attribute	data	(comma	delimited	file)'],

	'name':	'us_income'}

csv_path	=	ps.examples.get_path('usjoin.csv')

f	=	ps.open(csv_path)

f.header[0:10]

Spatial	data	processing	with	PySAL

16

['Name',

	'STATE_FIPS',

	'1929',

	'1930',

	'1931',

	'1932',

	'1933',

	'1934',

	'1935',

	'1936']

y2009	=	f.by_col('2009')

y2009[0:10]

[32274,	32077,	31493,	40902,	40093,	52736,	40135,	36565,	33086,	30987]

Working	with	shapefiles

We	can	also	work	with	local	files	outside	the	built-in	examples.

To	read	in	a	shapefile,	we	will	need	the	path	to	the	file.

shp_path	=	'../data/texas.shp'

print(shp_path)

../data/texas.shp

Then,	we	open	the	file	using	the		ps.open		command:

f	=	ps.open(shp_path)

	f		is	what	we	call	a	"file	handle."	That	means	that	it	only	points	to	the	data	and	provides	ways	to
work	with	it.	By	itself,	it	does	not	read	the	whole	dataset	into	memory.	To	see	basic	information
about	the	file,	we	can	use	a	few	different	methods.

For	instance,	the	header	of	the	file,	which	contains	most	of	the	metadata	about	the	file:

Spatial	data	processing	with	PySAL

17

f.header

{'BBOX	Mmax':	0.0,

	'BBOX	Mmin':	0.0,

	'BBOX	Xmax':	-93.50721740722656,

	'BBOX	Xmin':	-106.6495132446289,

	'BBOX	Ymax':	36.49387741088867,

	'BBOX	Ymin':	25.845197677612305,

	'BBOX	Zmax':	0.0,

	'BBOX	Zmin':	0.0,

	'File	Code':	9994,

	'File	Length':	49902,

	'Shape	Type':	5,

	'Unused0':	0,

	'Unused1':	0,

	'Unused2':	0,

	'Unused3':	0,

	'Unused4':	0,

	'Version':	1000}

To	actually	read	in	the	shapes	from	memory,	you	can	use	the	following	commands:

f.by_row(14)	#gets	the	14th	shape	from	the	file

<pysal.cg.shapes.Polygon	at	0x10d8baa20>

all_polygons	=	f.read()	#reads	in	all	polygons	from	memory

len(all_polygons)

254

So,	all	254	polygons	have	been	read	in	from	file.	These	are	stored	in	PySAL	shape	objects,	which
can	be	used	by	PySAL	and	can	be	converted	to	other	Python	shape	objects.

They	typically	have	a	few	methods.	So,	since	we've	read	in	polygonal	data,	we	can	get	some
properties	about	the	polygons.	Let's	just	have	a	look	at	the	first	polygon:

all_polygons[0:5]

Spatial	data	processing	with	PySAL

18

[<pysal.cg.shapes.Polygon	at	0x10d8baba8>,

	<pysal.cg.shapes.Polygon	at	0x10d8ba908>,

	<pysal.cg.shapes.Polygon	at	0x10d8ba860>,

	<pysal.cg.shapes.Polygon	at	0x10d8ba8d0>,

	<pysal.cg.shapes.Polygon	at	0x10d8baa90>]

all_polygons[0].centroid	#the	centroid	of	the	first	polygon

(-100.27156110567945,	36.27508640938005)

all_polygons[0].area

0.23682222998468205

all_polygons[0].perimeter

1.9582821721538344

While	in	the	Jupyter	Notebook,	you	can	examine	what	properties	an	object	has	by	using	the	tab
key.

polygon	=	all_polygons[0]

polygon.	#press	tab	when	the	cursor	is	right	after	the	dot

		File	"<ipython-input-20-aa03438a2fa8>",	line	1

				polygon.	#press	tab	when	the	cursor	is	right	after	the	dot

																																																														^

SyntaxError:	invalid	syntax

Working	with	Data	Tables

dbf_path	=	"../data/texas.dbf"

print(dbf_path)

Spatial	data	processing	with	PySAL

19

../data/texas.dbf

When	you're	working	with	tables	of	data,	like	a		csv		or		dbf	,	you	can	extract	your	data	in	the
following	way.	Let's	open	the	dbf	file	we	got	the	path	for	above.

f	=	ps.open(dbf_path)

Just	like	with	the	shapefile,	we	can	examine	the	header	of	the	dbf	file.

f.header

['NAME',

	'STATE_NAME',

	'STATE_FIPS',

	'CNTY_FIPS',

	'FIPS',

	'STFIPS',

	'COFIPS',

	'FIPSNO',

	'SOUTH',

	'HR60',

	'HR70',

	'HR80',

	'HR90',

	'HC60',

	'HC70',

	'HC80',

	'HC90',

	'PO60',

	'PO70',

	'PO80',

	'PO90',

	'RD60',

	'RD70',

	'RD80',

	'RD90',

	'PS60',

	'PS70',

	'PS80',

	'PS90',

	'UE60',

	'UE70',

	'UE80',

	'UE90',

	'DV60',

	'DV70',

Spatial	data	processing	with	PySAL

20

	'DV80',

	'DV90',

	'MA60',

	'MA70',

	'MA80',

	'MA90',

	'POL60',

	'POL70',

	'POL80',

	'POL90',

	'DNL60',

	'DNL70',

	'DNL80',

	'DNL90',

	'MFIL59',

	'MFIL69',

	'MFIL79',

	'MFIL89',

	'FP59',

	'FP69',

	'FP79',

	'FP89',

	'BLK60',

	'BLK70',

	'BLK80',

	'BLK90',

	'GI59',

	'GI69',

	'GI79',

	'GI89',

	'FH60',

	'FH70',

	'FH80',

	'FH90']

So,	the	header	is	a	list	containing	the	names	of	all	of	the	fields	we	can	read.	If	we	just	wanted	to
grab	the	data	of	interest,		HR90	,	we	can	use	either		by_col		or		by_col_array	,	depending	on	the
format	we	want	the	resulting	data	in:

HR90	=	f.by_col('HR90')

print(type(HR90).__name__,	HR90[0:5])

HR90	=	f.by_col_array('HR90')

print(type(HR90).__name__,	HR90[0:5])

Spatial	data	processing	with	PySAL

21

list	[0.0,	0.0,	18.31166453,	0.0,	3.6517674554]

ndarray	[[0.]

	[0.]

	[18.31166453]

	[0.]

	[3.65176746]]

As	you	can	see,	the		by_col		function	returns	a	list	of	data,	with	no	shape.	It	can	only	return	one
column	at	a	time:

HRs	=	f.by_col('HR90',	'HR80')

TypeError																																	Traceback	(most	recent	call	last)

<ipython-input-25-1fef6a3c3a50>	in	<module>()

---->	1	HRs	=	f.by_col('HR90',	'HR80')

TypeError:	__call__()	takes	2	positional	arguments	but	3	were	given

This	error	message	is	called	a	"traceback,"	as	you	see	in	the	top	right,	and	it	usually	provides
feedback	on	why	the	previous	command	did	not	execute	correctly.	Here,	you	see	that	one-too-
many	arguments	was	provided	to		__call__	,	which	tells	us	we	cannot	pass	as	many	arguments
as	we	did	to		by_col	.

If	you	want	to	read	in	many	columns	at	once	and	store	them	to	an	array,	use		by_col_array	:

HRs	=	f.by_col_array('HR90',	'HR80')

HRs[0:10]

Spatial	data	processing	with	PySAL

22

array([[0.								,			0.],

							[0.								,		10.50199538],

							[18.31166453,			5.10386362],

							[0.								,			0.],

							[3.65176746,		10.4297038],

							[0.								,			0.],

							[0.								,		18.85369532],

							[2.59514448,			6.33617194],

							[0.								,			0.],

							[5.59753708,			6.0331825]])

It	is	best	to	use		by_col_array		on	data	of	a	single	type.	That	is,	if	you	read	in	a	lot	of	columns,
some	of	them	numbers	and	some	of	them	strings,	all	columns	will	get	converted	to	the	same
datatype:

allcolumns	=	f.by_col_array(['NAME',	'STATE_NAME',	'HR90',	'HR80'])

allcolumns

array([['Lipscomb',	'Texas',	'0.0',	'0.0'],

							['Sherman',	'Texas',	'0.0',	'10.501995379'],

							['Dallam',	'Texas',	'18.31166453',	'5.1038636248'],

							...,	

							['Hidalgo',	'Texas',	'7.3003167816',	'8.2383277607'],

							['Willacy',	'Texas',	'5.6481219994',	'7.6212251119'],

							['Cameron',	'Texas',	'12.302014455',	'11.761321464']],	

						dtype='<U13')

Note	that	the	numerical	columns,		HR90		&		HR80		are	now	considered	strings,	since	they	show
up	with	the	single	tickmarks	around	them,	like		'0.0'	.

These	methods	work	similarly	for		.csv		files	as	well.

Using	Pandas	with	PySAL

A	new	functionality	added	to	PySAL	recently	allows	you	to	work	with	shapefile/dbf	pairs	using
Pandas.	This	optional	extension	is	only	turned	on	if	you	have	Pandas	installed.	The	extension	is
the		ps.pdio		module:

ps.pdio

Spatial	data	processing	with	PySAL

23

<module	'pysal.contrib.pdutilities'	from	'/Users/dani/anaconda/envs/gds-scipy16/li

b/python3.5/site-packages/pysal/contrib/pdutilities/__init__.py'>

To	use	it,	you	can	read	in	shapefile/dbf	pairs	using	the		ps.pdio.read_files		command.

shp_path	=	ps.examples.get_path('NAT.shp')

data_table	=	ps.pdio.read_files(shp_path)

This	reads	in	the	entire	database	table	and	adds	a	column	to	the	end,	called		geometry	,	that
stores	the	geometries	read	in	from	the	shapefile.

Now,	you	can	work	with	it	like	a	standard	pandas	dataframe.

data_table.head()

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

0
Lake	of
the
Woods

Minnesota 27 077 27077

1 Ferry Washington 53 019 53019

2 Stevens Washington 53 065 53065

3 Okanogan Washington 53 047 53047

4 Pend
Oreille Washington 53 051 53051

5	rows	×	70	columns

The		read_files		function	only	works	on	shapefile/dbf	pairs.	If	you	need	to	read	in	data	using
CSVs,	use	pandas	directly:

usjoin	=	pd.read_csv(csv_path)

#usjoin	=	ps.pdio.read_files(csv_path)	#will	not	work,	not	a	shp/dbf	pair

usjoin.head()

Spatial	data	processing	with	PySAL

24

Name STATE_FIPS 1929 1930 1931 1932 1933

0 Alabama 1 323 267 224 162 166

1 Arizona 4 600 520 429 321 308

2 Arkansas 5 310 228 215 157 157

3 California 6 991 887 749 580 546

4 Colorado 8 634 578 471 354 353

5	rows	×	83	columns

The	nice	thing	about	working	with	pandas	dataframes	is	that	they	have	very	powerful	baked-in
support	for	relational-style	queries.	By	this,	I	mean	that	it	is	very	easy	to	find	things	like:

The	number	of	counties	in	each	state:

data_table.groupby("STATE_NAME").size()

STATE_NAME

Alabama																		67

Arizona																		14

Arkansas																	75

California															58

Colorado																	63

Connecticut															8

Delaware																		3

District	of	Columbia						1

Florida																		67

Georgia																	159

Idaho																				44

Illinois																102

Indiana																		92

Iowa																					99

Kansas																		105

Kentucky																120

Louisiana																64

Maine																				16

Maryland																	24

Massachusetts												12

Michigan																	83

Minnesota																87

Mississippi														82

Missouri																115

Montana																		55

Nebraska																	93

Nevada																			17

Spatial	data	processing	with	PySAL

25

New	Hampshire												10

New	Jersey															21

New	Mexico															32

New	York																	58

North	Carolina										100

North	Dakota													53

Ohio																					88

Oklahoma																	77

Oregon																			36

Pennsylvania													67

Rhode	Island														5

South	Carolina											46

South	Dakota													66

Tennessee																95

Texas																			254

Utah																					29

Vermont																		14

Virginia																123

Washington															38

West	Virginia												55

Wisconsin																70

Wyoming																		23

dtype:	int64

Or,	to	get	the	rows	of	the	table	that	are	in	Arizona,	we	can	use	the		query		function	of	the
dataframe:

data_table.query('STATE_NAME	==	"Arizona"')

Spatial	data	processing	with	PySAL

26

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

1707 Navajo Arizona 04 017 04017

1708 Coconino Arizona 04 005 04005

1722 Mohave Arizona 04 015 04015

1726 Apache Arizona 04 001 04001

2002 Yavapai Arizona 04 025 04025

2182 Gila Arizona 04 007 04007

2262 Maricopa Arizona 04 013 04013

2311 Greenlee Arizona 04 011 04011

2326 Graham Arizona 04 009 04009

2353 Pinal Arizona 04 021 04021

2499 Pima Arizona 04 019 04019

2514 Cochise Arizona 04 003 04003

2615 Santa
Cruz Arizona 04 023 04023

3080 La	Paz Arizona 04 012 04012

14	rows	×	70	columns

Behind	the	scenes,	this	uses	a	fast	vectorized	library,		numexpr	,	to	essentially	do	the	following.

First,	compare	each	row's		STATE_NAME		column	to		'Arizona'		and	return		True		if	the	row
matches:

Spatial	data	processing	with	PySAL

27

data_table.STATE_NAME	==	'Arizona'

0							False

1							False

2							False

3							False

4							False

5							False

6							False

7							False

8							False

9							False

10						False

11						False

12						False

13						False

14						False

15						False

16						False

17						False

18						False

19						False

20						False

21						False

22						False

23						False

24						False

25						False

26						False

27						False

28						False

29						False

								...		

3055				False

3056				False

3057				False

3058				False

3059				False

3060				False

3061				False

3062				False

3063				False

3064				False

3065				False

3066				False

3067				False

3068				False

3069				False

3070				False

Spatial	data	processing	with	PySAL

28

3071				False

3072				False

3073				False

3074				False

3075				False

3076				False

3077				False

3078				False

3079				False

3080					True

3081				False

3082				False

3083				False

3084				False

Name:	STATE_NAME,	dtype:	bool

Then,	use	that	to	filter	out	rows	where	the	condition	is	true:

data_table[data_table.STATE_NAME	==	'Arizona']

Spatial	data	processing	with	PySAL

29

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

1707 Navajo Arizona 04 017 04017

1708 Coconino Arizona 04 005 04005

1722 Mohave Arizona 04 015 04015

1726 Apache Arizona 04 001 04001

2002 Yavapai Arizona 04 025 04025

2182 Gila Arizona 04 007 04007

2262 Maricopa Arizona 04 013 04013

2311 Greenlee Arizona 04 011 04011

2326 Graham Arizona 04 009 04009

2353 Pinal Arizona 04 021 04021

2499 Pima Arizona 04 019 04019

2514 Cochise Arizona 04 003 04003

2615 Santa
Cruz Arizona 04 023 04023

3080 La	Paz Arizona 04 012 04012

14	rows	×	70	columns

We	might	need	this	behind	the	scenes	knowledge	when	we	want	to	chain	together	conditions,	or
when	we	need	to	do	spatial	queries.

Spatial	data	processing	with	PySAL

30

This	is	because	spatial	queries	are	somewhat	more	complex.	Let's	say,	for	example,	we	want	all
of	the	counties	in	the	US	to	the	West	of		-121		longitude.	We	need	a	way	to	express	that
question.	Ideally,	we	want	something	like:

SELECT

								*

FROM

								data_table

WHERE

								x_centroid	<	-121

So,	let's	refer	to	an	arbitrary	polygon	in	the	the	dataframe's	geometry	column	as		poly	.	The
centroid	of	a	PySAL	polygon	is	stored	as	an		(X,Y)		pair,	so	the	longitude	is	the	first	element	of
the	pair,		poly.centroid[0]	.

Then,	applying	this	condition	to	each	geometry,	we	get	the	same	kind	of	filter	we	used	above	to
grab	only	counties	in	Arizona:

data_table.geometry.apply(lambda	x:	x.centroid[0]	<	-121)\

																			.head()

0				False

1				False

2				False

3				False

4				False

Name:	geometry,	dtype:	bool

If	we	use	this	as	a	filter	on	the	table,	we	can	get	only	the	rows	that	match	that	condition,	just	like
we	did	for	the		STATE_NAME		query:

data_table[data_table.geometry.apply(lambda	x:	x.centroid[0]	<	-119)].head()

Spatial	data	processing	with	PySAL

31

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

3 Okanogan Washington 53 047 53047

27 Whatcom Washington 53 073 53073

31 Skagit Washington 53 057 53057

42 Chelan Washington 53 007 53007

44 Clallam Washington 53 009 53009

5	rows	×	70	columns

len(data_table[data_table.geometry.apply(lambda	x:	x.centroid[0]	<	-119)])	#how	ma

ny	west	of	-119?

109

Other	types	of	spatial	queries
Everybody	knows	the	following	statements	are	true:

1.	 If	you	head	directly	west	from	Reno,	Nevada,	you	will	shortly	enter	California.
2.	 San	Diego	is	in	California.

But	what	does	this	tell	us	about	the	location	of	San	Diego	relative	to	Reno?

Or	for	that	matter,	how	many	counties	in	California	are	to	the	east	of	Reno?

geom	=	data_table.query('(NAME	==	"Washoe")	&	(STATE_NAME	==	"Nevada")').geometry

lon,lat	=	geom.values[0].centroid

lon

Spatial	data	processing	with	PySAL

32

-119.6555030699793

cal_counties	=	data_table.query('(STATE_NAME=="California")')

cal_counties[cal_counties.geometry.apply(lambda	x:	x.centroid[0]	>	lon)]

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

1312 Mono California 06 051 06051

1591 Fresno California 06 019 06019

1620 Inyo California 06 027 06027

1765 Tulare California 06 107 06107

1956 Kern California 06 029 06029

1957 San
Bernardino California 06 071 06071

2117 Ventura California 06 111 06111

2255 Riverside California 06 065 06065

2279 Orange California 06 059 06059

2344 San	Diego California 06 073 06073

2351 Los
Angeles California 06 037 06037

2358 Imperial California 06 025 06025

12	rows	×	70	columns

Spatial	data	processing	with	PySAL

33

len(cal_counties)

58

This	works	on	any	type	of	spatial	query.

For	instance,	if	we	wanted	to	find	all	of	the	counties	that	are	within	a	threshold	distance	from	an
observation's	centroid,	we	can	do	it	in	the	following	way.

But	first,	we	need	to	handle	distance	calculations	on	the	earth's	surface.

Spatial	data	processing	with	PySAL

34

from	math	import	radians,	sin,	cos,	sqrt,	asin

def	gcd(loc1,	loc2,	R=3961):

				"""Great	circle	distance	via	Haversine	formula

				Parameters

				loc1:	tuple	(long,	lat	in	decimal	degrees)

				loc2:	tuple	(long,	lat	in	decimal	degrees)

				R:	Radius	of	the	earth	(3961	miles,	6367	km)

				Returns

				great	circle	distance	between	loc1	and	loc2	in	units	of	R

				Notes

				Does	not	take	into	account	non-spheroidal	shape	of	the	Earth

				>>>	san_diego	=	-117.1611,	32.7157

				>>>	austin	=	-97.7431,	30.2672

				>>>	gcd(san_diego,	austin)

				1155.474644164695

				"""

				lon1,	lat1	=	loc1

				lon2,	lat2	=	loc2

				dLat	=	radians(lat2	-	lat1)

				dLon	=	radians(lon2	-	lon1)

				lat1	=	radians(lat1)

				lat2	=	radians(lat2)

				a	=	sin(dLat/2)**2	+	cos(lat1)*cos(lat2)*sin(dLon/2)**2

				c	=	2*asin(sqrt(a))

				return	R	*	c

def	gcdm(loc1,	loc2):

				return	gcd(loc1,	loc2)

def	gcdk(loc1,	loc2):

				return	gcd(loc1,	loc2,	6367)

Spatial	data	processing	with	PySAL

35

san_diego	=	-117.1611,	32.7157

austin	=	-97.7431,	30.2672

gcd(san_diego,	austin)

1155.474644164695

gcdk(san_diego,	austin)

1857.3357887898544

loc1	=	(-117.1611,	0.0)

loc2	=	(-118.1611,	0.0)

gcd(loc1,	loc2)

69.13249167149539

loc1	=	(-117.1611,	45.0)

loc2	=	(-118.1611,	45.0)

gcd(loc1,	loc2)

48.88374342930467

loc1	=	(-117.1611,	89.0)

loc2	=	(-118.1611,	89.0)

gcd(loc1,	loc2)

1.2065130336642724

lats	=	range(0,	91)

onedeglon	=	[gcd((-117.1611,lat),(-118.1611,lat))	for	lat	in	lats]

Spatial	data	processing	with	PySAL

36

import	matplotlib.pyplot	as	plt

%matplotlib	inline

plt.plot(lats,	onedeglon)

plt.ylabel('miles')

plt.xlabel('degree	of	latitude')

plt.title('Length	of	a	degree	of	longitude')

<matplotlib.text.Text	at	0x114174470>

san_diego	=	-117.1611,	32.7157

austin	=	-97.7431,	30.2672

gcd(san_diego,	austin)

1155.474644164695

Now	we	can	use	our	distance	function	to	pose	distance-related	queries	on	our	data	table.

#	Find	all	the	counties	with	centroids	within	50	miles	of	Austin

def	near_target_point(polygon,	target=austin,	threshold=50):

				return	gcd(polygon.centroid,	target)	<	threshold	

data_table[data_table.geometry.apply(near_target_point)]

Spatial	data	processing	with	PySAL

37

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

2698 Burnet Texas 48 053 48053

2716 Williamson Texas 48 491 48491

2742 Travis Texas 48 453 48453

2751 Lee Texas 48 287 48287

2754 Blanco Texas 48 031 48031

2762 Bastrop Texas 48 021 48021

2769 Hays Texas 48 209 48209

2795 Caldwell Texas 48 055 48055

2798 Comal Texas 48 091 48091

2808 Guadalupe Texas 48 187 48187

10	rows	×	70	columns

Moving	in	and	out	of	the	dataframe

Most	things	in	PySAL	will	be	explicit	about	what	type	their	input	should	be.	Most	of	the	time,
PySAL	functions	require	either	lists	or	arrays.	This	is	why	the	file-handler	methods	are	the
default	IO	method	in	PySAL:	the	rest	of	the	computational	tools	are	built	around	their	datatypes.

However,	it	is	very	easy	to	get	the	correct	datatype	from	Pandas	using	the		values		and		tolist	
commands.

	tolist()		will	convert	its	entries	to	a	list.	But,	it	can	only	be	called	on	individual	columns
(called		Series		in		pandas		documentation).

So,	to	turn	the		NAME		column	into	a	list:

Spatial	data	processing	with	PySAL

38

data_table.NAME.tolist()[0:10]

['Lake	of	the	Woods',

	'Ferry',

	'Stevens',

	'Okanogan',

	'Pend	Oreille',

	'Boundary',

	'Lincoln',

	'Flathead',

	'Glacier',

	'Toole']

To	extract	many	columns,	you	must	select	the	columns	you	want	and	call	their		.values	
attribute.

If	we	were	interested	in	grabbing	all	of	the		HR		variables	in	the	dataframe,	we	could	first	select
those	column	names:

HRs	=	[col	for	col	in	data_table.columns	if	col.startswith('HR')]

HRs

['HR60',	'HR70',	'HR80',	'HR90']

We	can	use	this	to	focus	only	on	the	columns	we	want:

data_table[HRs].head()

HR60 HR70 HR80 HR90

0 0.000000 0.000000 8.855827 0.000000

1 0.000000 0.000000 17.208742 15.885624

2 1.863863 1.915158 3.450775 6.462453

3 2.612330 1.288643 3.263814 6.996502

4 0.000000 0.000000 7.770008 7.478033

With	this,	calling		.values		gives	an	array	containing	all	of	the	entries	in	this	subset	of	the	table:

Spatial	data	processing	with	PySAL

39

data_table[['HR90',	'HR80']].values

array([[0.								,			8.85582713],

							[15.88562351,		17.20874204],

							[6.46245315,			3.4507747],

							...,	

							[4.36732988,			5.2803488],

							[3.72771194,			3.00003],

							[2.04885495,			1.19474313]])

Using	the	PySAL	pdio	tools	means	that	if	you're	comfortable	with	working	in	Pandas,	you	can
continue	to	do	so.

If	you're	more	comfortable	using	Numpy	or	raw	Python	to	do	your	data	processing,	PySAL's	IO
tools	naturally	support	this.

Exercises
1.	 Find	the	county	with	the	western	most	centroid	that	is	within	1000	miles	of	Austin.
2.	 Find	the	distance	between	Austin	and	that	centroid.

Spatial	data	processing	with	PySAL

40

Choropleth	Mapping
	IPYNB	

Introduction

When	PySAL	was	originally	planned,	the	intention	was	to	focus	on	the	computational	aspects	of
exploratory	spatial	data	analysis	and	spatial	econometric	methods,	while	relying	on	existing	GIS
packages	and	visualization	libraries	for	visualization	of	computations.	Indeed,	we	have	partnered
with	esri	and	QGIS	towards	this	end.

However,	over	time	we	have	received	many	requests	for	supporting	basic	geovisualization	within
PySAL	so	that	the	step	of	having	to	interoperate	with	an	exertnal	package	can	be	avoided,	thereby
increasing	the	efficiency	of	the	spatial	analytical	workflow.

In	this	notebook,	we	demonstrate	several	approaches	towards	a	particular	subset	of
geovisualization	methods,	namely	choropleth	maps.	We	start	with	a	self-contained	exploratory
workflow	where	no	other	dependencies	beyond	PySAL	are	required.	The	idea	here	is	to	support
quick	generation	of	different	views	of	your	data	to	complement	the	statistical	and	econometric
work	in	PySAL.	Once	your	work	has	progressed	to	the	publication	stage,	we	point	you	to
resources	that	can	be	used	for	publication	quality	output.

We	then	move	on	to	consider	three	other	packages	that	can	be	used	in	conjunction	with	PySAL
for	choropleth	mapping:

geopandas
folium
cartopy
bokeh

PySAL	Viz	Module
The	mapping	module	in	PySAL	is	organized	around	three	main	layers:

A	lower-level	layer	that	reads	polygon,	line	and	point	shapefiles	and	returns	a	Matplotlib
collection.
A	medium-level	layer	that	performs	some	usual	transformations	on	a	Matplotlib	object	(e.g.

Geovisualization

41

https://geodacenter.asu.edu/arc_pysal
http://planet.qgis.org/planet/tag/pysal/

color	code	polygons	according	to	a	vector	of	values).
A	higher-level	layer	intended	for	end-users	for	particularly	useful	cases	and	style	preferences
pre-defined	(e.g.	Create	a	choropleth).

%matplotlib	inline

import	numpy	as	np

import	pysal	as	ps

import	random	as	rdm

from	pysal.contrib.viz	import	mapping	as	maps

from	pylab	import	*

Lower-level	component

This	includes	basic	functionality	to	read	spatial	data	from	a	file	(currently	only	shapefiles
supported)	and	produce	rudimentary	Matplotlib	objects.	The	main	methods	are:

map_poly_shape:	to	read	in	polygon	shapefiles
map_line_shape:	to	read	in	line	shapefiles
map_point_shape:	to	read	in	point	shapefiles

These	methods	all	support	an	option	to	subset	the	observations	to	be	plotted	(very	useful	when
missing	values	are	present).	They	can	also	be	overlaid	and	combined	by	using	the		setup_ax	
function.	the	resulting	object	is	very	basic	but	also	very	flexible	so,	for	minds	used	to	matplotlib
this	should	be	good	news	as	it	allows	to	modify	pretty	much	any	property	and	attribute.

Example

Geovisualization

42

shp_link	=	'../data/texas.shp'

shp	=	ps.open(shp_link)

some	=	[bool(rdm.getrandbits(1))	for	i	in	ps.open(shp_link)]

fig	=	figure(figsize=(9,9))

base	=	maps.map_poly_shp(shp)

base.set_facecolor('none')

base.set_linewidth(0.75)

base.set_edgecolor('0.8')

some	=	maps.map_poly_shp(shp,	which=some)

some.set_alpha(0.5)

some.set_linewidth(0.)

cents	=	np.array([poly.centroid	for	poly	in	ps.open(shp_link)])

pts	=	scatter(cents[:,	0],	cents[:,	1])

pts.set_color('red')

ax	=	maps.setup_ax([base,	some,	pts],	[shp.bbox,	shp.bbox,	shp.bbox])

fig.add_axes(ax)

show()

Geovisualization

43

Medium-level	component

This	layer	comprises	functions	that	perform	usual	transformations	on	matplotlib	objects,	such	as
color	coding	objects	(points,	polygons,	etc.)	according	to	a	series	of	values.	This	includes	the
following	methods:

	base_choropleth_classless	

	base_choropleth_unique	

	base_choropleth_classif	

Example

Geovisualization

44

net_link	=	ps.examples.get_path('eberly_net.shp')

net	=	ps.open(net_link)

values	=	np.array(ps.open(net_link.replace('.shp',	'.dbf')).by_col('TNODE'))

pts_link	=	ps.examples.get_path('eberly_net_pts_onnetwork.shp')

pts	=	ps.open(pts_link)

fig	=	figure(figsize=(9,9))

netm	=	maps.map_line_shp(net)

netc	=	maps.base_choropleth_unique(netm,	values)

ptsm	=	maps.map_point_shp(pts)

ptsm	=	maps.base_choropleth_classif(ptsm,	values)

ptsm.set_alpha(0.5)

ptsm.set_linewidth(0.)

ax	=	maps.setup_ax([netc,	ptsm],	[net.bbox,	net.bbox])

fig.add_axes(ax)

show()

Geovisualization

45

maps.plot_poly_lines('../data/texas.shp')

callng	plt.show()

Geovisualization

46

Higher-level	component

This	currently	includes	the	following	end-user	functions:

	plot_poly_lines	:	very	quick	shapfile	plotting

shp_link	=	'../data/texas.shp'

values	=	np.array(ps.open('../data/texas.dbf').by_col('HR90'))

types	=	['classless',	'unique_values',	'quantiles',	'equal_interval',	'fisher_jenk

s']

for	typ	in	types:

				maps.plot_choropleth(shp_link,	values,	typ,	title=typ)

Geovisualization

47

Geovisualization

48

Geovisualization

49

PySAL	Map	Classifiers

hr90	=	values

hr90q5	=	ps.Quantiles(hr90,	k=5)

hr90q5

															Quantiles																

Lower												Upper													Count

==

									x[i]	<=		2.421															51

	2.421	<	x[i]	<=		5.652															51

	5.652	<	x[i]	<=		8.510															50

	8.510	<	x[i]	<=	12.571															51

12.571	<	x[i]	<=	43.516															51

hr90q4	=	ps.Quantiles(hr90,	k=4)

hr90q4

															Quantiles																

Lower												Upper													Count

==

									x[i]	<=		3.918															64

	3.918	<	x[i]	<=		7.232															63

	7.232	<	x[i]	<=	11.414															63

11.414	<	x[i]	<=	43.516															64

Geovisualization

50

hr90e5	=	ps.Equal_Interval(hr90,	k=5)

hr90e5

														Equal	Interval													

Lower												Upper														Count

===

									x[i]	<=		8.703															157

	8.703	<	x[i]	<=	17.406																76

17.406	<	x[i]	<=	26.110																16

26.110	<	x[i]	<=	34.813																	2

34.813	<	x[i]	<=	43.516																	3

hr90fj5	=	ps.Fisher_Jenks(hr90,	k=5)

hr90fj5

															Fisher_Jenks														

Lower												Upper														Count

===

									x[i]	<=		3.156																55

	3.156	<	x[i]	<=		8.846															104

	8.846	<	x[i]	<=	15.881																64

15.881	<	x[i]	<=	27.640																27

27.640	<	x[i]	<=	43.516																	4

hr90fj5.adcm	#	measure	of	fit:	Absolute	deviation	around	class	means

352.10763138100003

hr90q5.adcm

361.5413784392

hr90e5.adcm

614.51093704210064

Geovisualization

51

hr90fj5.yb[0:10]	#	what	bin	each	value	is	placed	in

array([0,	0,	3,	0,	1,	0,	0,	0,	0,	1])

hr90fj5.bins	#	upper	bounds	of	each	bin

array([3.15613527,			8.84642604,		15.88088069,		27.63957988,		43.51610096])

GeoPandas

import	geopandas	as	gpd

shp_link	=	"../data/texas.shp"

tx	=	gpd.read_file(shp_link)

tx.plot(color='blue')

<matplotlib.axes._subplots.AxesSubplot	at	0x1191aab70>

type(tx)

Geovisualization

52

geopandas.geodataframe.GeoDataFrame

tx.plot(column='HR90',	scheme='QUANTILES')	#	uses	pysal	classifier	under	the	hood

<matplotlib.axes._subplots.AxesSubplot	at	0x111162b00>

tx.plot(column='HR90',	scheme='QUANTILES',	k=3,	cmap='OrRd')	#	we	need	a	continuou

s	color	map

<matplotlib.axes._subplots.AxesSubplot	at	0x11acd5278>

Geovisualization

53

tx.plot(column='HR90',	scheme='QUANTILES',	k=5,	cmap='OrRd')	#	bump	up	to	quintiles

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd9663b0a20>

tx.plot(color='green')	#	explore	options,	polygon	fills

Geovisualization

54

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd965d15400>

tx.plot(color='green',linewidth=0)	#	border

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd9656d4550>

tx.plot(color='green',linewidth=0.1)	#	border

Geovisualization

55

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd9650add68>

tx.plot(column='HR90',	scheme='QUANTILES',	k=9,	cmap='OrRd')	#	now	with	qunatiles

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd964a0a978>

tx.plot(column='HR90',	scheme='QUANTILES',	k=5,	cmap='OrRd',	linewidth=0.1)

Geovisualization

56

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd96444cda0>

import	matplotlib.pyplot	as	plt	#	make	plot	larger

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.plot(column='HR90',	scheme='QUANTILES',	k=5,	cmap='OrRd',	linewidth=0.1,	ax=ax)

ax.set_axis_off()

plt.show()

Geovisualization

57

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.plot(column='HR90',	scheme='QUANTILES',	\

								k=6,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white')

ax.set_axis_off()

plt.show()

Geovisualization

58

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.plot(column='HR90',	scheme='equal_interval',	\

								k=6,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white')

ax.set_axis_off()

plt.show()

Geovisualization

59

#	try	deciles

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.plot(column='HR90',	scheme='QUANTILES',	k=10,	cmap='OrRd',	linewidth=0.1,	ax=ax

)

ax.set_axis_off()

plt.show()

/home/serge/anaconda2/envs/gds-scipy16/lib/python3.5/site-packages/geopandas/geoda

taframe.py:447:	UserWarning:	Invalid	k:	10	(2	<=	k	<=	9),	setting	k=5	(default)

		return	plot_dataframe(self,	*args,	**kwargs)

Geovisualization

60

#	ok,	let's	work	around	to	get	deciles

q10	=	ps.Quantiles(tx.HR90,k=10)

q10.bins

array([0.								,			2.42057708,			4.59760916,			5.6524773	,

									7.23234613,			8.50963716,		10.30447074,		12.57143011,

								16.6916767	,		43.51610096])

q10.yb

Geovisualization

61

array([0,	0,	9,	0,	2,	0,	0,	2,	0,	3,	9,	3,	6,	4,	0,	2,	8,	0,	0,	2,	0,	2,	5,

							0,	7,	6,	4,	9,	9,	8,	5,	4,	1,	3,	0,	8,	0,	4,	7,	7,	6,	5,	8,	0,	0,	0,

							6,	2,	3,	9,	0,	0,	5,	8,	6,	3,	3,	6,	2,	8,	0,	0,	2,	0,	8,	2,	8,	0,	3,

							0,	4,	0,	7,	9,	2,	3,	3,	8,	9,	5,	8,	0,	4,	0,	4,	0,	8,	2,	0,	2,	8,	9,

							4,	6,	6,	8,	4,	3,	6,	7,	7,	5,	6,	3,	0,	4,	4,	1,	6,	0,	6,	7,	4,	6,	5,

							4,	6,	0,	0,	5,	0,	2,	7,	0,	2,	2,	7,	2,	8,	9,	4,	0,	7,	5,	9,	8,	7,	5,

							0,	3,	5,	3,	5,	0,	5,	0,	5,	4,	9,	7,	0,	8,	5,	0,	4,	3,	6,	8,	4,	7,	9,

							5,	6,	5,	9,	0,	7,	0,	9,	6,	4,	4,	2,	9,	2,	2,	7,	3,	2,	9,	9,	8,	0,	6,

							5,	7,	8,	2,	0,	9,	7,	7,	4,	3,	0,	4,	5,	8,	7,	8,	6,	9,	2,	5,	9,	2,	2,

							3,	4,	8,	6,	5,	9,	9,	6,	7,	5,	7,	0,	4,	8,	6,	6,	3,	3,	7,	3,	4,	9,	7,

							5,	0,	0,	3,	9,	9,	6,	2,	3,	6,	4,	3,	9,	3,	6,	3,	8,	7,	5,	0,	8,	5,	3,

							7])

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=q10.yb).plot(column='cl',	categorical=True,	\

								k=10,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white',	legend=True)

ax.set_axis_off()

plt.show()

Geovisualization

62

fj10	=	ps.Fisher_Jenks(tx.HR90,k=10)

fj10.bins

#labels	=	["%0.1f"%l	for	l	in	fj10.bins]

#labels

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=fj10.yb).plot(column='cl',	categorical=True,	\

								k=10,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white',	legend=True)

ax.set_axis_off()

plt.show()

Geovisualization

63

fj10.adcm

133.99950285589998

q10.adcm

220.80434598560004

q5	=	ps.Quantiles(tx.HR90,k=5)

Geovisualization

64

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=q5.yb).plot(column='cl',	categorical=True,	\

								k=10,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white',	legend=True)

ax.set_axis_off()

plt.show()

Folium

In	addition	to	using	matplotlib,	the	viz	module	includes	components	that	interface	with	the	folium
library	which	provides	a	Pythonic	way	to	generate	Leaflet	maps.

Geovisualization

65

http://folium.readthedocs.io/en/latest/
http://leafletjs.com/

import	pysal	as	ps

import	geojson	as	gj

from	pysal.contrib.viz	import	folium_mapping	as	fm

First,	we	need	to	convert	the	data	into	a	JSON	format.	JSON,	short	for	"Javascript	Serialized
Object	Notation,"	is	a	simple	and	effective	way	to	represent	objects	in	a	digital	environment.	For
geographic	information,	the	GeoJSON	standard	defines	how	to	represent	geographic	information
in	JSON	format.	Python	programmers	may	be	more	comfortable	thinking	of	JSON	data	as
something	akin	to	a	standard	Python	dictionary.

filepath	=	'../data/texas.shp'[:-4]

shp	=	ps.open(filepath	+	'.shp')

dbf	=	ps.open(filepath	+	'.dbf')

js	=	fm.build_features(shp,	dbf)

Just	to	show,	this	constructs	a	dictionary	with	the	following	keys:

js.keys()

dict_keys(['bbox',	'type',	'features'])

js.type

'FeatureCollection'

js.bbox

[-106.6495132446289,	25.845197677612305,	-93.50721740722656,	36.49387741088867]

js.features[0]

Geovisualization

66

https://geojson.org

{"bbox":	[-100.5494155883789,	36.05754852294922,	-99.99715423583984,	36.4938774108

8867],	"geometry":	{"coordinates":	[[[-100.00686645507812,	36.49387741088867],	[-1

00.00114440917969,	36.49251937866211],	[-99.99715423583984,	36.05754852294922],	[-

100.54059600830078,	36.058135986328125],	[-100.5494155883789,	36.48944854736328],	

[-100.00686645507812,	36.49387741088867]]],	"type":	"Polygon"},	"properties":	{"BL

K60":	0.029359953,	"BLK70":	0.0286861733,	"BLK80":	0.0265533723,	"BLK90":	0.031816

7356,	"CNTY_FIPS":	"295",	"COFIPS":	295,	"DNL60":	1.293817423,	"DNL70":	1.31703378

79,	"DNL80":	1.3953635084,	"DNL90":	1.2153856529,	"DV60":	1.4948859166,	"DV70":	2.

2709475333,	"DV80":	3.5164835165,	"DV90":	6.1016949153,	"FH60":	6.7245119306,	"FH7

0":	4.5,	"FH80":	3.8353601497,	"FH90":	6.0935799782,	"FIPS":	"48295",	"FIPSNO":	48

295,	"FP59":	22.4,	"FP69":	12.1,	"FP79":	10.851262862,	"FP89":	9.1403699674,	"GI59

":	0.2869290401,	"GI69":	0.378218563,	"GI79":	0.4070049836,	"GI89":	0.3730049522,	

"HC60":	0.0,	"HC70":	0.0,	"HC80":	0.0,	"HC90":	0.0,	"HR60":	0.0,	"HR70":	0.0,	"HR8

0":	0.0,	"HR90":	0.0,	"MA60":	32.4,	"MA70":	34.3,	"MA80":	31.0,	"MA90":	35.8,	"MFI

L59":	8.5318847402,	"MFIL69":	8.9704320743,	"MFIL79":	9.8020637224,	"MFIL89":	10.2

52241206,	"NAME":	"Lipscomb",	"PO60":	3406,	"PO70":	3486,	"PO80":	3766,	"PO90":	31

43,	"POL60":	8.1332938612,	"POL70":	8.1565102261,	"POL80":	8.2337687092,	"POL90":	

8.0529330368,	"PS60":	-1.514026445,	"PS70":	-1.449058083,	"PS80":	-1.476411495,	"P

S90":	-1.571799202,	"RD60":	-0.917851658,	"RD70":	-0.602337681,	"RD80":	-0.3555032

11,	"RD90":	-0.605606852,	"SOUTH":	1,	"STATE_FIPS":	"48",	"STATE_NAME":	"Texas",	"

STFIPS":	48,	"UE60":	2.0,	"UE70":	1.7,	"UE80":	1.9411764706,	"UE90":	1.7328519856}

,	"type":	"Feature"}

Then,	we	write	the	json	to	a	file:

with	open('./example.json',	'w')	as	out:

				gj.dump(js,	out)

Mapping

Let's	look	at	the	columns	that	we	are	going	to	map.

list(js.features[0].properties.keys())[:5]

['DNL90',	'RD90',	'HR90',	'FH80',	'DNL70']

We	can	map	these	attributes	by	calling	them	as	arguments	to	the	choropleth	mapping	function:

fm.choropleth_map?

Geovisualization

67

#	folium	maps	have	been	turned	off	for	creating	gitbook.	

#	to	run	them,	uncomment.

#fm.choropleth_map('./example.json',	'FIPS',	'HR90',zoom_start=6)

This	produces	a	map	using	default	classifications	and	color	schemes	and	saves	it	to	an	html	file.
We	set	the	function	to	have	sane	defaults.	However,	if	the	user	wants	to	have	more	control,	we
have	many	options	available.

There	are	arguments	to	change	the	classification	scheme:

#	folium	maps	have	been	turned	off	for	creating	gitbook.	

#	to	run	them,	uncomment.

#fm.choropleth_map('./example.json',	'FIPS',	'HR90',	classification	=	'Quantiles',

classes=4)

Most	PySAL	classifiers	are	supported.

Base	Map	Type

#	folium	maps	have	been	turned	off	for	creating	gitbook.	

#	to	run	them,	uncomment.

#fm.choropleth_map('./example.json',	'FIPS',	'HR90',	classification	=	'Jenks	Caspa

ll',	\

#																		tiles='Stamen	Toner',zoom_start=6,	save=True)

We	support	the	entire	range	of	builtin	basemap	types	in	Folium,	but	custom	tilesets	from	MapBox
are	not	supported	(yet).

Color	Scheme

#	folium	maps	have	been	turned	off	for	creating	gitbook.	

#	to	run	them,	uncomment.

#fm.choropleth_map('./example.json',	'FIPS',	'HR80',	classification	=	'Jenks	Caspa

ll',	\

#																	tiles='Stamen	Toner',	fill_color	=	'PuBuGn',	save=True)

All	color	schemes	are	Color	Brewer	and	simply	pass	through	to		Folium		on	execution.

Folium	supports	up	to	6	classes.

Geovisualization

68

http://colorbrewer2.org

Cartopy

Next	we	turn	to	cartopy.

import	matplotlib.patches	as	mpatches

import	matplotlib.pyplot	as	plt

import	cartopy.crs	as	ccrs

import	cartopy.io.shapereader	as	shpreader

reader	=	shpreader.Reader("../data/texas.shp")

def	choropleth(classes,	colors,	reader,	legend=None,	title=None,	fileName=None,	dp

i=600):

				ax	=	plt.axes([0,0,1,1],	projection=ccrs.LambertConformal())

				ax.set_extent([-108,	-93,	38,	24],	ccrs.Geodetic())

				ax.background_patch.set_visible(False)

				ax.outline_patch.set_visible(False)

				if	title:

								plt.title(title)

				ax.set_extent([-108,	-93,	38,	24],	ccrs.Geodetic())

				ax.background_patch.set_visible(False)

				ax.outline_patch.set_visible(False)

				for	i,state	in	enumerate(reader.geometries()):

								facecolor	=	colors[classes[i]]

								#facecolor	=	'red'

								edgecolor	=	'black'

								ax.add_geometries([state],	ccrs.PlateCarree(),	

																									facecolor=facecolor,	edgecolor=edgecolor)

				leg	=	[mpatches.Rectangle((0,0),1,1,	facecolor=color)	for	color	in	colors]

				if	legend:

								plt.legend(leg,	legend,	loc='lower	left',	bbox_to_anchor=(0.025,	-0.1),	fa

ncybox=True)

				if	fileName:

								plt.savefig(fileName,	dpi=dpi)

				plt.show()

HR90	=	values

bins_q5	=	ps.Quantiles(HR90,	k=5)

Geovisualization

69

http://scitools.org.uk/cartopy/

bwr	=	plt.cm.get_cmap('Reds')

bwr(.76)

c5	=	[bwr(c)	for	c	in	[0.2,	0.4,	0.6,	0.7,	1.0]]

classes	=	bins_q5.yb

choropleth(classes,	c5,	reader)

choropleth(classes,	c5,	reader,	title="HR90	Quintiles")

Geovisualization

70

legend	=["%3d"%ub	for	ub	in	bins_q5.bins]

choropleth(classes,	c5,	reader,	legend,	title="HR90	Quintiles")

Geovisualization

71

def	choropleth(classes,	colors,	reader,	legend=None,	title=None,	fileName=None,	dp

i=600):

				f,	ax	=	plt.subplots(1,	figsize=(9,9))

				ax.get_xaxis().set_visible(False)

				ax.get_yaxis().set_visible(False)

				ax.axison=False

				ax	=	plt.axes([0,0,1,1],	projection=ccrs.LambertConformal())

				ax.set_extent([-108,	-93,	38,	24],	ccrs.Geodetic())

				ax.background_patch.set_visible(False)

				ax.outline_patch.set_visible(False)

				if	title:

								plt.title(title)

				ax.set_extent([-108,	-93,	38,	24],	ccrs.Geodetic())

				ax.background_patch.set_visible(False)

				ax.outline_patch.set_visible(False)

				for	i,state	in	enumerate(reader.geometries()):

								facecolor	=	colors[classes[i]]

								#facecolor	=	'red'

								edgecolor	=	'black'

								ax.add_geometries([state],	ccrs.PlateCarree(),	

																									facecolor=facecolor,	edgecolor=edgecolor)

				leg	=	[mpatches.Rectangle((0,0),1,1,	facecolor=color)	for	color	in	colors]

				if	legend:

								plt.legend(leg,	legend,	loc='lower	left',	bbox_to_anchor=(0.025,	-0.1),	fa

ncybox=True)

				if	fileName:

								plt.savefig(fileName,	dpi=dpi)

				#ax.set_axis_off()

				plt.show()

legend	=["%3d"%ub	for	ub	in	bins_q5.bins]

choropleth(classes,	c5,	reader,	legend,	title="HR90	Quintiles")

Geovisualization

72

legend	=["%3d"%ub	for	ub	in	bins_q5.bins]

choropleth(classes,	c5,	reader,	legend,	title="HR90	Quintiles")

Geovisualization

73

Geovisualization

74

def	choropleth(classes,	colors,	reader,	legend=None,	title=None,	fileName=None,	dp

i=600):

				f,	ax	=	plt.subplots(1,	figsize=(9,9),	frameon=False)

				ax.get_xaxis().set_visible(False)

				ax.get_yaxis().set_visible(False)

				ax.axison=False

				ax	=	plt.axes([0,0,1,1],	projection=ccrs.LambertConformal())

				ax.set_extent([-108,	-93,	38,	24],	ccrs.Geodetic())

				ax.background_patch.set_visible(False)

				ax.outline_patch.set_visible(False)

				if	title:

								plt.title(title)

				for	i,state	in	enumerate(reader.geometries()):

								facecolor	=	colors[classes[i]]

								edgecolor	=	'white'

								ax.add_geometries([state],	ccrs.PlateCarree(),	

																									facecolor=facecolor,	edgecolor=edgecolor)

				leg	=	[mpatches.Rectangle((0,0),1,1,	facecolor=color)	for	color	in	colors]

				if	legend:

								plt.legend(leg,	legend,	loc='lower	left',	bbox_to_anchor=(0.025,	-0.1),	fa

ncybox=True)

				if	fileName:

								plt.savefig(fileName,	dpi=dpi)

				plt.show()

legend	=["%3d"%ub	for	ub	in	bins_q5.bins]

choropleth(classes,	c5,	reader,	legend,	title="HR90	Quintiles")

Geovisualization

75

For	an	example	publication	and	code	where	Cartopy	was	used	for	the	mapping	see:	Rey	(2016).

Bokeh

website

Geovisualization

76

https://github.com/sjsrey/limaaag
http://bokeh.pydata.org/en/latest/

from	collections	import	OrderedDict

#from	bokeh.sampledata	import	us_counties,	unemployment

from	bokeh.plotting	import	figure,	show,	output_notebook,	ColumnDataSource

from	bokeh.models	import	HoverTool

from	bokeh.charts	import	Scatter,	output_file,	show

def	gpd_bokeh(df):

				"""Convert	geometries	from	geopandas	to	bokeh	format"""

				nan	=	float('nan')

				lons	=	[]

				lats	=	[]

				for	i,shape	in	enumerate(df.geometry.values):

								if	shape.geom_type	==	'MultiPolygon':

												gx	=	[]

												gy	=	[]

												ng	=	len(shape.geoms)	-	1

												for	j,member	in	enumerate(shape.geoms):

																xy	=	np.array(list(member.exterior.coords))

																xs	=	xy[:,0].tolist()

																ys	=	xy[:,1].tolist()

																gx.extend(xs)

																gy.extend(ys)

																if	j	<	ng:

																				gx.append(nan)

																				gy.append(nan)

												lons.append(gx)

												lats.append(gy)

								else:					

												xy	=	np.array(list(shape.exterior.coords))

												xs	=	xy[:,0].tolist()

												ys	=	xy[:,1].tolist()

												lons.append(xs)

												lats.append(ys)	

				return	lons,lats

lons,	lats	=	gpd_bokeh(tx)

Geovisualization

77

p	=	figure(title="Texas",	toolbar_location='left',

										plot_width=1100,	plot_height=700)

p.patches(lons,	lats,	fill_alpha=0.7,	#fill_color=state_colors,

									line_color="#884444",	line_width=2,	line_alpha=0.3)

output_file('choropleth.html',	title="choropleth.py	example")

show(p)

bwr	=	plt.cm.get_cmap('Reds')

bwr(.76)

c5	=	[bwr(c)	for	c	in	[0.2,	0.4,	0.6,	0.7,	1.0]]

classes	=	bins_q5.yb

colors	=	[c5[i]	for	i	in	classes]

colors5	=	["#F1EEF6",	"#D4B9DA",	"#C994C7",	"#DF65B0",	"#DD1C77"]

colors	=	[colors5[i]	for	i	in	classes]

p	=	figure(title="Texas	HR90	Quintiles",	toolbar_location='left',

										plot_width=1100,	plot_height=700)

p.patches(lons,	lats,	fill_alpha=0.7,	fill_color=colors,

									line_color="#884444",	line_width=2,	line_alpha=0.3)

output_file('choropleth.html',	title="choropleth.py	example")

show(p)

Hover

from	bokeh.models	import	HoverTool

from	bokeh.plotting	import	figure,	show,	output_file,	ColumnDataSource

Geovisualization

78

source	=	ColumnDataSource(data=dict(

								x=lons,

								y=lats,

								color=colors,

								name=tx.NAME,

								rate=HR90

))

TOOLS	=	"pan,	wheel_zoom,	box_zoom,	reset,	hover,	save"

p	=	figure(title="Texas	Homicide	1990	(Quintiles)",	tools=TOOLS,

										plot_width=900,	plot_height=900)

p.patches('x',	'y',	source=source,

									fill_color='color',	fill_alpha=0.7,

									line_color='white',	line_width=0.5)

hover	=	p.select_one(HoverTool)

hover.point_policy	=	'follow_mouse'

hover.tooltips	=	[

				("Name",	"@name"),

				("Homicide	rate",	"@rate"),

				("(Long,	Lat)",	"($x,	$y)"),

]

output_file("hr90.html",	title="hr90.py	example")

show(p)

Exercises
1.	 Using	Bokeh,	use	PySALs	Fisher	Jenks	classifier	with	k=10	to	generate	a	choropleth	map	of

the	homicide	rates	in	1990	for	Texas	counties.	Modify	the	hover	tooltips	so	that	in	addition
to	showing	the	Homicide	rate,	the	rank	of	that	rate	is	also	shown.

2.	 Explore		ps.esda.mapclassify.		(hint:	use	tab	completion)	to	select	a	new	classifier
(different	from	the	ones	in	this	notebook).	Using	the	same	data	as	in	exercise	1,	apply	this
classifier	and	create	a	choropleth	using	Bokeh.

Geovisualization

79

Spatial	Weights
	IPYNB	

Spatial	weights	are	mathematical	structures	used	to	represent	spatial	relationships.	Many	spatial
analytics,	such	as	spatial	autocorrelation	statistics	and	regionalization	algorithms	rely	on	spatial
weights.	Generally	speaking,	a	spatial	weight	$w_{i,j}$	expresses	the	notion	of	a	geographical
relationship	between	locations	i	and	j.	These	relationships	can	be	based	on	a	number	of
criteria	including	contiguity,	geospatial	distance	and	general	distances.

PySAL	offers	functionality	for	the	construction,	manipulation,	analysis,	and	conversion	of	a	wide
array	of	spatial	weights.

We	begin	with	construction	of	weights	from	common	spatial	data	formats.

import	pysal	as	ps

import	numpy	as	np

There	are	functions	to	construct	weights	directly	from	a	file	path.

shp_path	=	"../data/texas.shp"

Weight	Types

Contiguity:

Queen	Weights

A	commonly-used	type	of	weight	is	a	queen	contigutiy	weight,	which	reflects	adjacency
relationships	as	a	binary	indicator	variable	denoting	whether	or	not	a	polygon	shares	an	edge	or	a
vertex	with	another	polygon.	These	weights	are	symmetric,	in	that	when	polygon	A	neighbors
polygon	B,	both	$w{AB}	=	1$	and	$w{BA}	=	1$.

To	construct	queen	weights	from	a	shapefile,	use	the		queen_from_shapefile		function:

qW	=	ps.queen_from_shapefile(shp_path)

dataframe	=	ps.pdio.read_files(shp_path)

Spatial	weights	in	PySAL

80

qW

<pysal.weights.weights.W	at	0x104142860>

All	weights	objects	have	a	few	traits	that	you	can	use	to	work	with	the	weights	object,	as	well	as
to	get	information	about	the	weights	object.

To	get	the	neighbors	&	weights	around	an	observation,	use	the	observation's	index	on	the	weights
object,	like	a	dictionary:

qW[4]	#neighbors	&	weights	of	the	5th	observation	(0-index	remember)

{0:	1.0,	3:	1.0,	5:	1.0,	6:	1.0,	7:	1.0}

By	default,	the	weights	and	the	pandas	dataframe	will	use	the	same	index.	So,	we	can	view	the
observation	and	its	neighbors	in	the	dataframe	by	putting	the	observation's	index	and	its
neighbors'	indexes	together	in	one	list:

self_and_neighbors	=	[4]

self_and_neighbors.extend(qW.neighbors[4])

print(self_and_neighbors)

[4,	0,	3,	5,	6,	7]

and	grabbing	those	elements	from	the	dataframe:

dataframe.loc[self_and_neighbors]

Spatial	weights	in	PySAL

81

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

4 Ochiltree Texas 48 357 48357

0 Lipscomb Texas 48 295 48295

3 Hansford Texas 48 195 48195

5 Roberts Texas 48 393 48393

6 Hemphill Texas 48 211 48211

7 Hutchinson Texas 48 233 48233

6	rows	×	70	columns

A	full,	dense	matrix	describing	all	of	the	pairwise	relationships	is	constructed	using	the		.full	
method,	or	when		pysal.full		is	called	on	a	weights	object:

Wmatrix,	ids	=	qW.full()

#Wmatrix,	ids	=	ps.full(qW)

Wmatrix

array([[0.,		0.,		0.,	...,		0.,		0.,		0.],

							[0.,		0.,		1.,	...,		0.,		0.,		0.],

							[0.,		1.,		0.,	...,		0.,		0.,		0.],

							...,	

							[0.,		0.,		0.,	...,		0.,		1.,		1.],

							[0.,		0.,		0.,	...,		1.,		0.,		1.],

							[0.,		0.,		0.,	...,		1.,		1.,		0.]])

n_neighbors	=	Wmatrix.sum(axis=1)	#	how	many	neighbors	each	region	has

n_neighbors[4]

Spatial	weights	in	PySAL

82

5.0

qW.cardinalities[4]

5

Note	that	this	matrix	is	binary,	in	that	its	elements	are	either	zero	or	one,	since	an	observation	is
either	a	neighbor	or	it	is	not	a	neighbor.

However,	many	common	use	cases	of	spatial	weights	require	that	the	matrix	is	row-standardized.
This	is	done	simply	in	PySAL	using	the		.transform		attribute

qW.transform	=	'r'

Now,	if	we	build	a	new	full	matrix,	its	rows	should	sum	to	one:

Wmatrix,	ids	=	qW.full()

Wmatrix.sum(axis=1)	#numpy	axes	are	0:column,	1:row,	2:facet,	into	higher	dimensio

ns

Spatial	weights	in	PySAL

83

array([1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,		1.,

								1.,		1.,		1.,		1.,		1.,		1.,		1.])

Since	weight	matrices	are	typically	very	sparse,	there	is	also	a	sparse	weights	matrix	constructor:

qW.sparse

<254x254	sparse	matrix	of	type	'<class	'numpy.float64'>'

				with	1460	stored	elements	in	Compressed	Sparse	Row	format>

qW.pct_nonzero	#Percentage	of	nonzero	neighbor	counts

2.263004526009052

By	default,	PySAL	assigns	each	observation	an	index	according	to	the	order	in	which	the
observation	was	read	in.	This	means	that,	by	default,	all	of	the	observations	in	the	weights	object
are	indexed	by	table	order.	If	you	have	an	alternative	ID	variable,	you	can	pass	that	into	the
weights	constructor.

For	example,	the		texas.shp		dataset	has	a	possible	alternative	ID	Variable,	a		FIPS		code.

dataframe.head()

Spatial	weights	in	PySAL

84

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

0 Lipscomb Texas 48 295 48295

1 Sherman Texas 48 421 48421

2 Dallam Texas 48 111 48111

3 Hansford Texas 48 195 48195

4 Ochiltree Texas 48 357 48357

5	rows	×	70	columns

The	observation	we	were	discussing	above	is	in	the	fifth	row:	Ochiltree	county,	Texas.	Note	that
its	FIPS	code	is	48357.

Then,	instead	of	indexing	the	weights	and	the	dataframe	just	based	on	read-order,	use	the		FIPS	
code	as	an	index:

qW	=	ps.queen_from_shapefile(shp_path,	idVariable='FIPS')

qW[4]	#fails,	since	no	FIPS	is	4.

Spatial	weights	in	PySAL

85

KeyError																																		Traceback	(most	recent	call	last)

<ipython-input-21-1d8a3009bc1e>	in	<module>()

---->	1	qW[4]	#fails,	since	no	FIPS	is	4.

/Users/dani/anaconda/envs/gds-scipy16/lib/python3.5/site-packages/pysal/weights/we

ights.py	in	__getitem__(self,	key)

				504									{1:	1.0,	4:	1.0,	101:	1.0,	85:	1.0,	5:	1.0}

				505									"""

-->	506									return	dict(list(zip(self.neighbors[key],	self.weights[key])))

				507	

				508					def	__iter__(self):

KeyError:	4

Note	that	a		KeyError		in	Python	usually	means	that	some	index,	here		4	,	was	not	found	in	the
collection	being	searched,	the	IDs	in	the	queen	weights	object.	This	makes	sense,	since	we
explicitly	passed	an		idVariable		argument,	and	nothing	has	a		FIPS		code	of	4.

Instead,	if	we	use	the	observation's		FIPS		code:

qW['48357']

{'48195':	1.0,	'48211':	1.0,	'48233':	1.0,	'48295':	1.0,	'48393':	1.0}

We	get	what	we	need.

In	addition,	we	have	to	now	query	the	dataframe	using	the		FIPS		code	to	find	our	neighbors.	But,
this	is	relatively	easy	to	do,	since	pandas	will	parse	the	query	by	looking	into	python	objects,	if
told	to.

First,	let	us	store	the	neighbors	of	our	target	county:

self_and_neighbors	=	['48357']

self_and_neighbors.extend(qW.neighbors['48357'])

Then,	we	can	use	this	list	in		.query	:

dataframe.query('FIPS	in	@self_and_neighbors')

Spatial	weights	in	PySAL

86

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

0 Lipscomb Texas 48 295 48295

3 Hansford Texas 48 195 48195

4 Ochiltree Texas 48 357 48357

5 Roberts Texas 48 393 48393

6 Hemphill Texas 48 211 48211

7 Hutchinson Texas 48 233 48233

6	rows	×	70	columns

Note	that	we	have	to	use		@		before	the	name	in	order	to	show	that	we're	referring	to	a	python
object	and	not	a	column	in	the	dataframe.

#dataframe.query('FIPS	in	self_and_neighbors')	will	fail	because	there	is	no	colum

n	called	'self_and_neighbors'

Of	course,	we	could	also	reindex	the	dataframe	to	use	the	same	index	as	our	weights:

fips_frame	=	dataframe.set_index(dataframe.FIPS)

fips_frame.head()

Spatial	weights	in	PySAL

87

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

FIPS

48295 Lipscomb Texas 48 295 48295

48421 Sherman Texas 48 421 48421

48111 Dallam Texas 48 111 48111

48195 Hansford Texas 48 195 48195

48357 Ochiltree Texas 48 357 48357

5	rows	×	70	columns

Now	that	both	are	using	the	same	weights,	we	can	use	the		.loc		indexer	again:

fips_frame.loc[self_and_neighbors]

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

FIPS

48357 Ochiltree Texas 48 357 48357

48295 Lipscomb Texas 48 295 48295

48195 Hansford Texas 48 195 48195

48393 Roberts Texas 48 393 48393

48211 Hemphill Texas 48 211 48211

48233 Hutchinson Texas 48 233 48233

6	rows	×	70	columns

Spatial	weights	in	PySAL

88

Rook	Weights

Rook	weights	are	another	type	of	contiguity	weight,	but	consider	observations	as	neighboring
only	when	they	share	an	edge.	The	rook	neighbors	of	an	observation	may	be	different	than	its
queen	neighbors,	depending	on	how	the	observation	and	its	nearby	polygons	are	configured.

We	can	construct	this	in	the	same	way	as	the	queen	weights,	using	the	special
	rook_from_shapefile		function:

rW	=	ps.rook_from_shapefile(shp_path,	idVariable='FIPS')

rW['48357']

{'48195':	1.0,	'48295':	1.0,	'48393':	1.0}

These	weights	function	exactly	like	the	Queen	weights,	and	are	only	distinguished	by	what	they
consider	"neighbors."

self_and_neighbors	=	['48357']

self_and_neighbors.extend(rW.neighbors['48357'])

fips_frame.loc[self_and_neighbors]

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

FIPS

48357 Ochiltree Texas 48 357 48357

48295 Lipscomb Texas 48 295 48295

48195 Hansford Texas 48 195 48195

48393 Roberts Texas 48 393 48393

4	rows	×	70	columns

Bishop	Weights

Spatial	weights	in	PySAL

89

In	theory,	a	"Bishop"	weighting	scheme	is	one	that	arises	when	only	polygons	that	share	vertexes
are	considered	to	be	neighboring.	But,	since	Queen	contiguigy	requires	either	an	edge	or	a	vertex
and	Rook	contiguity	requires	only	shared	edges,	the	following	relationship	is	true:

Q = R ∪ B

where	\mathcal{Q}	is	the	set	of	neighbor	pairs	via	queen	contiguity,	\mathcal{R}	is	the	set
of	neighbor	pairs	via	Rook	contiguity,	and	\mathcal{B}	via	Bishop	contiguity.	Thus:

Q ∖R = B

Bishop	weights	entail	all	Queen	neighbor	pairs	that	are	not	also	Rook	neighbors.

PySAL	does	not	have	a	dedicated	bishop	weights	constructor,	but	you	can	construct	very	easily
using	the		w_difference		function.	This	function	is	one	of	a	family	of	tools	to	work	with	weights,
all	defined	in		ps.weights	,	that	conduct	these	types	of	set	operations	between	weight	objects.

bW	=	ps.w_difference(qW,	rW,	constrained=False,	silent_island_warning=True)	#silen

ce	because	there	will	be	a	lot	of	warnings

bW.histogram

[(0,	161),	(1,	48),	(2,	33),	(3,	8),	(4,	4)]

Thus,	the	vast	majority	of	counties	have	no	bishop	neighbors.	But,	a	few	do.	A	simple	way	to	see
these	observations	in	the	dataframe	is	to	find	all	elements	of	the	dataframe	that	are	not	"islands,"
the	term	for	an	observation	with	no	neighbors:

islands	=	bW.islands

#	Using	`.head()`	to	limit	the	number	of	rows	printed

dataframe.query('FIPS	not	in	@islands').head()

Spatial	weights	in	PySAL

90

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

0 Lipscomb Texas 48 295 48295

1 Sherman Texas 48 421 48421

2 Dallam Texas 48 111 48111

3 Hansford Texas 48 195 48195

4 Ochiltree Texas 48 357 48357

5	rows	×	70	columns

Distance

There	are	many	other	kinds	of	weighting	functions	in	PySAL.	Another	separate	type	use	a
continuous	measure	of	distance	to	define	neighborhoods.

radius	=	ps.cg.sphere.RADIUS_EARTH_MILES

radius

3958.755865744055

#ps.min_threshold_dist_from_shapefile?

threshold	=	ps.min_threshold_dist_from_shapefile('../data/texas.shp',radius)	#	now

	in	miles,	maximum	nearest	neighbor	distance	between	the	n	observations

threshold

60.47758554135752

Spatial	weights	in	PySAL

91

knn	defined	weights

knn4_bad	=	ps.knnW_from_shapefile('../data/texas.shp',	k=4)	#	ignore	curvature	of	

the	earth

knn4_bad.histogram

[(4,	254)]

knn4	=	ps.knnW_from_shapefile('../data/texas.shp',	k=4,	radius=radius)

knn4.histogram

[(4,	254)]

knn4[0]

{3:	1.0,	4:	1.0,	5:	1.0,	6:	1.0}

knn4_bad[0]

{4:	1.0,	5:	1.0,	6:	1.0,	13:	1.0}

Kernel	W

Kernel	Weights	are	continuous	distance-based	weights	that	use	kernel	densities	to	define	the
neighbor	relationship.	Typically,	they	estimate	a		bandwidth	,	which	is	a	parameter	governing
how	far	out	observations	should	be	considered	neighboring.	Then,	using	this	bandwidth,	they
evaluate	a	continuous	kernel	function	to	provide	a	weight	between	0	and	1.

Many	different	choices	of	kernel	functions	are	supported,	and	bandwidths	can	either	be	fixed
(constant	over	all	units)	or	adaptive	in	function	of	unit	density.

Spatial	weights	in	PySAL

92

For	example,	if	we	want	to	use	adaptive	bandwidths	for	the	map	and	weight	according	to	a
gaussian	kernel:

kernelWa	=	ps.adaptive_kernelW_from_shapefile('../data/texas.shp',	radius=radius)

kernelWa

<pysal.weights.Distance.Kernel	at	0x7f8fe4cfe080>

dataframe.loc[kernelWa.neighbors[4]	+	[4]]

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

4 Ochiltree Texas 48 357 48357

5 Roberts Texas 48 393 48393

3 Hansford Texas 48 195 48195

4 Ochiltree Texas 48 357 48357

4	rows	×	70	columns

kernelWa.bandwidth[0:7]

array([[30.30546757],

							[30.05684855],

							[39.14876899],

							[29.96302462],

							[29.96302462],

							[30.21084447],

							[30.23619029]])

kernelWa[4]

{3:	9.99999900663795e-08,	4:	1.0,	5:	0.002299013803371608}

Spatial	weights	in	PySAL

93

kernelWa[2]

{1:	9.99999900663795e-08,	2:	1.0,	8:	0.23409571720488287}

Distance	Thresholds

#ps.min_threshold_dist_from_shapefile?

#	find	the	largest	nearest	neighbor	distance	between	centroids

threshold	=	ps.min_threshold_dist_from_shapefile('../data/texas.shp',	radius=radiu

s)	#	decimal	degrees

Wmind0	=	ps.threshold_binaryW_from_shapefile('../data/texas.shp',	radius=radius,	t

hreshold=threshold*.9)

WARNING:	there	are	2	disconnected	observations

Island	ids:		[133,	181]

Wmind0.histogram

[(0,	2),

	(1,	3),

	(2,	5),

	(3,	4),

	(4,	10),

	(5,	26),

	(6,	16),

	(7,	31),

	(8,	70),

	(9,	32),

	(10,	29),

	(11,	12),

	(12,	5),

	(13,	2),

	(14,	5),

	(15,	2)]

Wmind	=	ps.threshold_binaryW_from_shapefile('../data/texas.shp',	radius=radius,	th

reshold=threshold)

Spatial	weights	in	PySAL

94

Wmind.histogram

[(1,	2),

	(2,	3),

	(3,	4),

	(4,	8),

	(5,	5),

	(6,	20),

	(7,	26),

	(8,	9),

	(9,	32),

	(10,	31),

	(11,	37),

	(12,	33),

	(13,	23),

	(14,	6),

	(15,	7),

	(16,	2),

	(17,	4),

	(18,	2)]

centroids	=	np.array([list(poly.centroid)	for	poly	in	dataframe.geometry])

centroids[0:10]

array([[-100.27156111,			36.27508641],

							[-101.8930971	,			36.27325425],

							[-102.59590795,			36.27354996],

							[-101.35351324,			36.27230422],

							[-100.81561379,			36.27317803],

							[-100.81482387,			35.8405153],

							[-100.2694824	,			35.83996075],

							[-101.35420366,			35.8408377],

							[-102.59375964,			35.83958662],

							[-101.89248229,			35.84058246]])

Wmind[0]

{3:	1,	4:	1,	5:	1,	6:	1,	13:	1}

Spatial	weights	in	PySAL

95

knn4[0]

{3:	1.0,	4:	1.0,	5:	1.0,	6:	1.0}

Visualization

%matplotlib	inline

import	matplotlib.pyplot	as	plt

from	pylab	import	figure,	scatter,	show

wq	=	ps.queen_from_shapefile('../data/texas.shp')

wq[0]

{4:	1.0,	5:	1.0,	6:	1.0}

fig	=	figure(figsize=(9,9))

plt.plot(centroids[:,0],	centroids[:,1],'.')

plt.ylim([25,37])

show()

Spatial	weights	in	PySAL

96

wq.neighbors[0]

[4,	5,	6]

Spatial	weights	in	PySAL

97

from	pylab	import	figure,	scatter,	show

fig	=	figure(figsize=(9,9))

plt.plot(centroids[:,0],	centroids[:,1],'.')

#plt.plot(s04[:,0],	s04[:,1],	'-')

plt.ylim([25,37])

for	k,neighs	in	wq.neighbors.items():

				#print(k,neighs)

				origin	=	centroids[k]

				for	neigh	in	neighs:

								segment	=	centroids[[k,neigh]]

								plt.plot(segment[:,0],	segment[:,1],	'-')

plt.title('Queen	Neighbor	Graph')

show()

Spatial	weights	in	PySAL

98

wr	=	ps.rook_from_shapefile('../data/texas.shp')

fig	=	figure(figsize=(9,9))

plt.plot(centroids[:,0],	centroids[:,1],'.')

#plt.plot(s04[:,0],	s04[:,1],	'-')

plt.ylim([25,37])

for	k,neighs	in	wr.neighbors.items():

				#print(k,neighs)

				origin	=	centroids[k]

				for	neigh	in	neighs:

								segment	=	centroids[[k,neigh]]

								plt.plot(segment[:,0],	segment[:,1],	'-')

plt.title('Rook	Neighbor	Graph')

show()

Spatial	weights	in	PySAL

99

fig	=	figure(figsize=(9,9))

plt.plot(centroids[:,0],	centroids[:,1],'.')

#plt.plot(s04[:,0],	s04[:,1],	'-')

plt.ylim([25,37])

for	k,neighs	in	Wmind.neighbors.items():

				origin	=	centroids[k]

				for	neigh	in	neighs:

								segment	=	centroids[[k,neigh]]

								plt.plot(segment[:,0],	segment[:,1],	'-')

plt.title('Minimum	Distance	Threshold	Neighbor	Graph')

show()

Spatial	weights	in	PySAL

100

Wmind.pct_nonzero

3.8378076756153514

wr.pct_nonzero

2.0243040486080974

wq.pct_nonzero

Spatial	weights	in	PySAL

101

2.263004526009052

Exercise
1.	 Answer	this	question	before	writing	any	code:	What	spatial	weights	structure	would	be	more

dense,	Texas	counties	based	on	rook	contiguity	or	Texas	counties	based	on	knn	with	k=4?
2.	 Why?
3.	 Write	code	to	see	if	you	are	correct.

Spatial	weights	in	PySAL

102

Exploratory	Spatial	Data	Analysis	(ESDA)
	IPYNB	

%matplotlib	inline

import	pysal	as	ps

import	pandas	as	pd

import	numpy	as	np

from	pysal.contrib.viz	import	mapping	as	maps

A	well-used	functionality	in	PySAL	is	the	use	of	PySAL	to	conduct	exploratory	spatial	data
analysis.	This	notebook	will	provide	an	overview	of	ways	to	conduct	exploratory	spatial	analysis
in	Python.

First,	let's	read	in	some	data:

data	=	ps.pdio.read_files("../data/texas.shp")

data.head()

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

0 Lipscomb Texas 48 295 48295

1 Sherman Texas 48 421 48421

2 Dallam Texas 48 111 48111

3 Hansford Texas 48 195 48195

4 Ochiltree Texas 48 357 48357

5	rows	×	70	columns

ESDA	with	PySAL

103

import	matplotlib.pyplot	as	plt

import	geopandas	as	gpd

shp_link	=	"../data/texas.shp"

tx	=	gpd.read_file(shp_link)

hr10	=	ps.Quantiles(data.HR90,	k=10)

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=hr10.yb).plot(column='cl',	categorical=True,	\

								k=10,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white',	legend=True)

ax.set_axis_off()

plt.title("HR90	Deciles")

plt.show()

ESDA	with	PySAL

104

Spatial	Autocorrelation

Visual	inspection	of	the	map	pattern	for	HR90	deciles	allows	us	to	search	for	spatial	structure.	If
the	spatial	distribution	of	the	rates	was	random,	then	we	should	not	see	any	clustering	of	similar
values	on	the	map.	However,	our	visual	system	is	drawn	to	the	darker	clusters	in	the	south	west	as
well	as	the	east,	and	a	concentration	of	the	lighter	hues	(lower	homicide	rates)	moving	north	to
the	pan	handle.

Our	brains	are	very	powerful	pattern	recognition	machines.	However,	sometimes	they	can	be	too
powerful	and	lead	us	to	detect	false	positives,	or	patterns	where	there	are	no	statistical	patterns.
This	is	a	particular	concern	when	dealing	with	visualization	of	irregular	polygons	of	differning
sizes	and	shapes.

The	concept	of	spatial	autocorrelation	relates	to	the	combination	of	two	types	of	similarity:
spatial	similarity	and	attribute	similarity.	Although	there	are	many	different	measures	of	spatial
autocorrelation,	they	all	combine	these	two	types	of	simmilarity	into	a	summary	measure.

Let's	use	PySAL	to	generate	these	two	types	of	similarity	measures.

Spatial	Similarity

We	have	already	encountered	spatial	weights	in	a	previous	notebook.	In	spatial	autocorrelation
analysis,	the	spatial	weights	are	used	to	formalize	the	notion	of	spatial	similarity.	As	we	have
seen	there	are	many	ways	to	define	spatial	weights,	here	we	will	use	queen	contiguity:

data	=	ps.pdio.read_files("../data/texas.shp")

W	=	ps.queen_from_shapefile("../data/texas.shp")

W.transform	=	'r'

Attribute	Similarity

So	the	spatial	weight	between	counties	i	and	j	indicates	if	the	two	counties	are	neighbors
(i.e.,	geographically	similar).	What	we	also	need	is	a	measure	of	attribute	similarity	to	pair	up
with	this	concept	of	spatial	similarity.	The	spatial	lag	is	a	derived	variable	that	accomplishes	this

for	us.	For	county	i	the	spatial	lag	is	defined	as:	HR90Lag = w HR90

HR90Lag	=	ps.lag_spatial(W,	data.HR90)

i ∑j i,j j

ESDA	with	PySAL

105

HR90LagQ10	=	ps.Quantiles(HR90Lag,	k=10)

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=HR90LagQ10.yb).plot(column='cl',	categorical=True,	\

								k=10,	cmap='OrRd',	linewidth=0.1,	ax=ax,	\

								edgecolor='white',	legend=True)

ax.set_axis_off()

plt.title("HR90	Spatial	Lag	Deciles")

plt.show()

ESDA	with	PySAL

106

The	decile	map	for	the	spatial	lag	tends	to	enhance	the	impression	of	value	similarity	in	space.
However,	we	still	have	the	challenge	of	visually	associating	the	value	of	the	homicide	rate	in	a
county	with	the	value	of	the	spatial	lag	of	rates	for	the	county.	The	latter	is	a	weighted	average	of
homicide	rates	in	the	focal	county's	neighborhood.

To	complement	the	geovisualization	of	these	associations	we	can	turn	to	formal	statistical
measures	of	spatial	autocorrelation.

HR90	=	data.HR90

b,a	=	np.polyfit(HR90,	HR90Lag,	1)

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

plt.plot(HR90,	HR90Lag,	'.',	color='firebrick')

	#	dashed	vert	at	mean	of	the	last	year's	PCI

plt.vlines(HR90.mean(),	HR90Lag.min(),	HR90Lag.max(),	linestyle='--')

	#	dashed	horizontal	at	mean	of	lagged	PCI

plt.hlines(HR90Lag.mean(),	HR90.min(),	HR90.max(),	linestyle='--')

#	red	line	of	best	fit	using	global	I	as	slope

plt.plot(HR90,	a	+	b*HR90,	'r')

plt.title('Moran	Scatterplot')

plt.ylabel('Spatial	Lag	of	HR90')

plt.xlabel('HR90')

plt.show()

ESDA	with	PySAL

107

Global	Spatial	Autocorrelation

In	PySAL,	commonly-used	analysis	methods	are	very	easy	to	access.	For	example,	if	we	were
interested	in	examining	the	spatial	dependence	in		HR90		we	could	quickly	compute	a	Moran's	I
statistic:

I_HR90	=	ps.Moran(data.HR90.values,	W)

I_HR90.I,	I_HR90.p_sim

ESDA	with	PySAL

108

(0.085976640313889768,	0.012999999999999999)

Thus,	the	I	statistic	is	0.859	for	this	data,	and	has	a	very	small	p	value.

b	#	note	I	is	same	as	the	slope	of	the	line	in	the	scatterplot

0.085976640313889505

We	can	visualize	the	distribution	of	simulated	I	statistics	using	the	stored	collection	of
simulated	statistics:

I_HR90.sim[0:5]

array([-0.05640543,	-0.03158917,		0.0277026	,		0.03998822,	-0.01140814])

A	simple	way	to	visualize	this	distribution	is	to	make	a	KDEplot	(like	we've	done	before),	and
add	a	rug	showing	all	of	the	simulated	points,	and	a	vertical	line	denoting	the	observed	value	of
the	statistic:

import	matplotlib.pyplot	as	plt

import	seaborn	as	sns

%matplotlib	inline

sns.kdeplot(I_HR90.sim,	shade=True)

plt.vlines(I_HR90.sim,	0,	0.5)

plt.vlines(I_HR90.I,	0,	10,	'r')

plt.xlim([-0.15,	0.15])

/home/serge/anaconda2/envs/gds-scipy16/lib/python3.5/site-packages/statsmodels/non

parametric/kdetools.py:20:	VisibleDeprecationWarning:	using	a	non-integer	number	i

nstead	of	an	integer	will	result	in	an	error	in	the	future

		y	=	X[:m/2+1]	+	np.r_[0,X[m/2+1:],0]*1j

(-0.15,	0.15)

ESDA	with	PySAL

109

Instead,	if	our	I	statistic	were	close	to	our	expected	value,		I_HR90.EI	,	our	plot	might	look	like
this:

sns.kdeplot(I_HR90.sim,	shade=True)

plt.vlines(I_HR90.sim,	0,	1)

plt.vlines(I_HR90.EI+.01,	0,	10,	'r')

plt.xlim([-0.15,	0.15])

/home/serge/anaconda2/envs/gds-scipy16/lib/python3.5/site-packages/statsmodels/non

parametric/kdetools.py:20:	VisibleDeprecationWarning:	using	a	non-integer	number	i

nstead	of	an	integer	will	result	in	an	error	in	the	future

		y	=	X[:m/2+1]	+	np.r_[0,X[m/2+1:],0]*1j

(-0.15,	0.15)

ESDA	with	PySAL

110

The	result	of	applying	Moran's	I	is	that	we	conclude	the	map	pattern	is	not	spatially	random,	but
instead	there	is	a	signficant	spatial	association	in	homicide	rates	in	Texas	counties	in	1990.

This	result	applies	to	the	map	as	a	whole,	and	is	sometimes	referred	to	as	"global	spatial
autocorrelation".	Next	we	turn	to	a	local	analysis	where	the	attention	shifts	to	detection	of	hot
spots,	cold	spots	and	spatial	outliers.

Local	Autocorrelation	Statistics
In	addition	to	the	Global	autocorrelation	statistics,	PySAL	has	many	local	autocorrelation
statistics.	Let's	compute	a	local	Moran	statistic	for	the	same	data	shown	above:

LMo_HR90	=	ps.Moran_Local(data.HR90.values,	W)

Now,	instead	of	a	single	I	statistic,	we	have	an	array	of	local	I_i	statistics,	stored	in	the
	.Is		attribute,	and	p-values	from	the	simulation	are	in		p_sim	.

LMo_HR90.Is[0:10],	LMo_HR90.p_sim[0:10]

(array([1.12087323,		0.47485223,	-1.22758423,		0.93868661,		0.68974296,

									0.78503173,		0.71047515,		0.41060686,		0.00740368,		0.14866352]),

	array([0.013,		0.169,		0.037,		0.015,		0.002,		0.009,		0.053,		0.063,

									0.489,		0.119]))

ESDA	with	PySAL

111

We	can	adjust	the	number	of	permutations	used	to	derive	every	pseudo-p	value	by	passing	a
different		permutations		argument:

LMo_HR90	=	ps.Moran_Local(data.HR90.values,	W,	permutations=9999)

In	addition	to	the	typical	clustermap,	a	helpful	visualization	for	LISA	statistics	is	a	Moran
scatterplot	with	statistically	significant	LISA	values	highlighted.

This	is	very	simple,	if	we	use	the	same	strategy	we	used	before:

First,	construct	the	spatial	lag	of	the	covariate:

Lag_HR90	=	ps.lag_spatial(W,	data.HR90.values)

HR90	=	data.HR90.values

Then,	we	want	to	plot	the	statistically-significant	LISA	values	in	a	different	color	than	the	others.
To	do	this,	first	find	all	of	the	statistically	significant	LISAs.	Since	the	p-values	are	in	the	same
order	as	the	I_i	statistics,	we	can	do	this	in	the	following	way

sigs	=	HR90[LMo_HR90.p_sim	<=	.001]

W_sigs	=	Lag_HR90[LMo_HR90.p_sim	<=	.001]

insigs	=	HR90[LMo_HR90.p_sim	>	.001]

W_insigs	=	Lag_HR90[LMo_HR90.p_sim	>	.001]

Then,	since	we	have	a	lot	of	points,	we	can	plot	the	points	with	a	statistically	insignficant	LISA
value	lighter	using	the		alpha		keyword.	In	addition,	we	would	like	to	plot	the	statistically
significant	points	in	a	dark	red	color.

b,a	=	np.polyfit(HR90,	Lag_HR90,	1)

Matplotlib	has	a	list	of	named	colors	and	will	interpret	colors	that	are	provided	in	hexadecimal
strings:

ESDA	with	PySAL

112

http://matplotlib.org/examples/color/named_colors.html

plt.plot(sigs,	W_sigs,	'.',	color='firebrick')

plt.plot(insigs,	W_insigs,	'.k',	alpha=.2)

	#	dashed	vert	at	mean	of	the	last	year's	PCI

plt.vlines(HR90.mean(),	Lag_HR90.min(),	Lag_HR90.max(),	linestyle='--')

	#	dashed	horizontal	at	mean	of	lagged	PCI

plt.hlines(Lag_HR90.mean(),	HR90.min(),	HR90.max(),	linestyle='--')

#	red	line	of	best	fit	using	global	I	as	slope

plt.plot(HR90,	a	+	b*HR90,	'r')

plt.text(s='$I	=	%.3f$'	%	I_HR90.I,	x=50,	y=15,	fontsize=18)

plt.title('Moran	Scatterplot')

plt.ylabel('Spatial	Lag	of	HR90')

plt.xlabel('HR90')

<matplotlib.text.Text	at	0x7fd6cf324d30>

We	can	also	make	a	LISA	map	of	the	data.

sig	=	LMo_HR90.p_sim	<	0.05

sig.sum()

44

ESDA	with	PySAL

113

hotspots	=	LMo_HR90.q==1	*	sig

hotspots.sum()

10

coldspots	=	LMo_HR90.q==3	*	sig

coldspots.sum()

17

data.HR90[hotspots]

98						9.784698

132				11.435106

164				17.129154

166				11.148272

209				13.274924

229				12.371338

234				31.721863

236					9.584971

239					9.256549

242				18.062652

Name:	HR90,	dtype:	float64

data[hotspots]

ESDA	with	PySAL

114

NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS

98 Ellis Texas 48 139 48139

132 Hudspeth Texas 48 229 48229

164 Jeff	Davis Texas 48 243 48243

166 Schleicher Texas 48 413 48413

209 Chambers Texas 48 071 48071

229 Frio Texas 48 163 48163

234 La	Salle Texas 48 283 48283

236 Dimmit Texas 48 127 48127

239 Webb Texas 48 479 48479

242 Duval Texas 48 131 48131

10	rows	×	70	columns

from	matplotlib	import	colors

hmap	=	colors.ListedColormap(['grey',	'red'])

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=hotspots*1).plot(column='cl',	categorical=True,	\

								k=2,	cmap=hmap,	linewidth=0.1,	ax=ax,	\

								edgecolor='grey',	legend=True)

ax.set_axis_off()

plt.show()

ESDA	with	PySAL

115

data.HR90[coldspots]

ESDA	with	PySAL

116

0						0.000000

3						0.000000

4						3.651767

5						0.000000

13					5.669899

19					3.480743

21					3.675119

32					2.211607

33					4.718762

48					5.509870

51					0.000000

62					3.677958

69					0.000000

81					0.000000

87					3.699593

140				8.125292

233				5.304688

Name:	HR90,	dtype:	float64

cmap	=	colors.ListedColormap(['grey',	'blue'])

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=coldspots*1).plot(column='cl',	categorical=True,	\

								k=2,	cmap=cmap,	linewidth=0.1,	ax=ax,	\

								edgecolor='black',	legend=True)

ax.set_axis_off()

plt.show()

ESDA	with	PySAL

117

from	matplotlib	import	colors

hcmap	=	colors.ListedColormap(['grey',	'red','blue'])

hotcold	=	hotspots*1	+	coldspots*2

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

tx.assign(cl=hotcold).plot(column='cl',	categorical=True,	\

								k=2,	cmap=hcmap,linewidth=0.1,	ax=ax,	\

								edgecolor='black',	legend=True)

ax.set_axis_off()

plt.show()

ESDA	with	PySAL

118

sns.kdeplot(data.HR90)

/home/serge/anaconda2/envs/gds-scipy16/lib/python3.5/site-packages/statsmodels/non

parametric/kdetools.py:20:	VisibleDeprecationWarning:	using	a	non-integer	number	i

nstead	of	an	integer	will	result	in	an	error	in	the	future

		y	=	X[:m/2+1]	+	np.r_[0,X[m/2+1:],0]*1j

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd6ccc17358>

ESDA	with	PySAL

119

sns.kdeplot(data.HR90)

sns.kdeplot(data.HR80)

sns.kdeplot(data.HR70)

sns.kdeplot(data.HR60)

/home/serge/anaconda2/envs/gds-scipy16/lib/python3.5/site-packages/statsmodels/non

parametric/kdetools.py:20:	VisibleDeprecationWarning:	using	a	non-integer	number	i

nstead	of	an	integer	will	result	in	an	error	in	the	future

		y	=	X[:m/2+1]	+	np.r_[0,X[m/2+1:],0]*1j

<matplotlib.axes._subplots.AxesSubplot	at	0x7fd6da838908>

ESDA	with	PySAL

120

data.HR90.mean()

8.302494460285041

data.HR90.median()

7.23234613355

Exercises
1.	 Repeat	the	global	analysis	for	the	years	1960,	70,	80	and	compare	the	results	to	what	we

found	in	1990.
2.	 The	local	analysis	can	also	be	repeated	for	the	other	decades.	How	many	counties	are	hot

spots	in	each	of	the	periods?
3.	 The	recent	Brexit	vote	provides	a	timely	example	where	local	spatial	autocorrelation

analysis	can	provide	interesting	insights.	One	local	analysis	of	the	vote	to	leave	has	recently
been	repored.	Extend	this	to	do	an	analysis	of	the	attribute		Pct_remain	.	Do	the	hot	spots
for	the	leave	vote	concord	with	the	cold	spots	for	the	remain	vote?

ESDA	with	PySAL

121

http://www.bbc.com/news/uk-politics-32810887
https://gist.github.com/darribas/691ad184280590d1219ffcf9a1678030

ESDA	with	PySAL

122

Exploratory	Spatial	and	Temporal	Data
Analysis	(ESTDA)

	IPYNB	

import	matplotlib

import	numpy	as	np

import	pysal	as	ps

import	matplotlib.pyplot	as	plt

%matplotlib	inline

f	=	ps.open(ps.examples.get_path('usjoin.csv'),	'r')

To	determine	what	is	in	the	file,	check	the		header		attribute	on	the	file	object:

f.header[0:10]

['Name',

	'STATE_FIPS',

	'1929',

	'1930',

	'1931',

	'1932',

	'1933',

	'1934',

	'1935',

	'1936']

Ok,	lets	pull	in	the		name		variable	to	see	what	we	have.

name	=	f.by_col('Name')

name

Space-time	analysis

123

['Alabama',

	'Arizona',

	'Arkansas',

	'California',

	'Colorado',

	'Connecticut',

	'Delaware',

	'Florida',

	'Georgia',

	'Idaho',

	'Illinois',

	'Indiana',

	'Iowa',

	'Kansas',

	'Kentucky',

	'Louisiana',

	'Maine',

	'Maryland',

	'Massachusetts',

	'Michigan',

	'Minnesota',

	'Mississippi',

	'Missouri',

	'Montana',

	'Nebraska',

	'Nevada',

	'New	Hampshire',

	'New	Jersey',

	'New	Mexico',

	'New	York',

	'North	Carolina',

	'North	Dakota',

	'Ohio',

	'Oklahoma',

	'Oregon',

	'Pennsylvania',

	'Rhode	Island',

	'South	Carolina',

	'South	Dakota',

	'Tennessee',

	'Texas',

	'Utah',

	'Vermont',

	'Virginia',

	'Washington',

	'West	Virginia',

	'Wisconsin',

	'Wyoming']

Now	obtain	per	capital	incomes	in	1929	which	is	in	the	column	associated	with		1929	.

Space-time	analysis

124

y1929	=	f.by_col('1929')

y1929[:10]

[323,	600,	310,	991,	634,	1024,	1032,	518,	347,	507]

And	now	2009

y2009	=	f.by_col("2009")

y2009[:10]

[32274,	32077,	31493,	40902,	40093,	52736,	40135,	36565,	33086,	30987]

These	are	read	into	regular	Python	lists	which	are	not	particularly	well	suited	to	efficient	data
analysis.	So	let's	convert	them	to	numpy	arrays.

y2009	=	np.array(y2009)

y2009

array([32274,	32077,	31493,	40902,	40093,	52736,	40135,	36565,	33086,

							30987,	40933,	33174,	35983,	37036,	31250,	35151,	35268,	47159,

							49590,	34280,	40920,	29318,	35106,	32699,	37057,	38009,	41882,

							48123,	32197,	46844,	33564,	38672,	35018,	33708,	35210,	38827,

							41283,	30835,	36499,	33512,	35674,	30107,	36752,	43211,	40619,

							31843,	35676,	42504])

Much	better.	But	pulling	these	in	and	converting	them	a	column	at	a	time	is	tedious	and	error
prone.	So	we	will	do	all	of	this	in	a	list	comprehension.

Y	=	np.array([f.by_col(str(year))	for	year	in	range(1929,2010)])	*	1.0

Y.shape

Space-time	analysis

125

(81,	48)

Y	=	Y.transpose()

Y.shape

(48,	81)

years	=	np.arange(1929,2010)

plt.plot(years,Y[0])

[<matplotlib.lines.Line2D	at	0x110ba1a58>]

RY	=	Y	/	Y.mean(axis=0)

plt.plot(years,RY[0])

Space-time	analysis

126

[<matplotlib.lines.Line2D	at	0x113575e10>]

name	=	np.array(name)

np.nonzero(name=='Ohio')

(array([32]),)

plt.plot(years,	RY[32],	label='Ohio')

plt.plot(years,	RY[0],	label='Alabama')

plt.legend()

<matplotlib.legend.Legend	at	0x1137d9eb8>

Space-time	analysis

127

Spaghetti	Plot

for	row	in	RY:

				plt.plot(years,	row)

Kernel	Density	(univariate,	aspatial)

Space-time	analysis

128

from	scipy.stats.kde	import	gaussian_kde

density	=	gaussian_kde(Y[:,0])

Y[:,0]

array([323.,			600.,			310.,			991.,			634.,		1024.,		1032.,			518.,

									347.,			507.,			948.,			607.,			581.,			532.,			393.,			414.,

									601.,			768.,			906.,			790.,			599.,			286.,			621.,			592.,

									596.,			868.,			686.,			918.,			410.,		1152.,			332.,			382.,

									771.,			455.,			668.,			772.,			874.,			271.,			426.,			378.,

									479.,			551.,			634.,			434.,			741.,			460.,			673.,			675.])

density	=	gaussian_kde(Y[:,0])

minY0	=	Y[:,0].min()*.90

maxY0	=	Y[:,0].max()*1.10

x	=	np.linspace(minY0,	maxY0,	100)

plt.plot(x,density(x))

[<matplotlib.lines.Line2D	at	0x113d2a748>]

Space-time	analysis

129

d2009	=	gaussian_kde(Y[:,-1])

minY0	=	Y[:,-1].min()*.90

maxY0	=	Y[:,-1].max()*1.10

x	=	np.linspace(minY0,	maxY0,	100)

plt.plot(x,d2009(x))

[<matplotlib.lines.Line2D	at	0x113a48358>]

Space-time	analysis

130

minR0	=	RY.min()

maxR0	=	RY.max()

x	=	np.linspace(minR0,	maxR0,	100)

d1929	=	gaussian_kde(RY[:,0])

d2009	=	gaussian_kde(RY[:,-1])

plt.plot(x,	d1929(x))

plt.plot(x,	d2009(x))

[<matplotlib.lines.Line2D	at	0x113d035c0>]

Space-time	analysis

131

plt.plot(x,	d1929(x),	label='1929')

plt.plot(x,	d2009(x),	label='2009')

plt.legend()

<matplotlib.legend.Legend	at	0x113a4a908>

Space-time	analysis

132

import	seaborn	as	sns

for	y	in	range(2010-1929):

				sns.kdeplot(RY[:,y])

#sns.kdeplot(data.HR80)

#sns.kdeplot(data.HR70)

#sns.kdeplot(data.HR60)

/Users/dani/anaconda/envs/gds-scipy16/lib/python3.5/site-packages/statsmodels/nonp

arametric/kdetools.py:20:	VisibleDeprecationWarning:	using	a	non-integer	number	in

stead	of	an	integer	will	result	in	an	error	in	the	future

		y	=	X[:m/2+1]	+	np.r_[0,X[m/2+1:],0]*1j

import	seaborn	as	sns

for	y	in	range(2010-1929):

				sns.kdeplot(RY[:,y])

/Users/dani/anaconda/envs/gds-scipy16/lib/python3.5/site-packages/statsmodels/nonp

arametric/kdetools.py:20:	VisibleDeprecationWarning:	using	a	non-integer	number	in

stead	of	an	integer	will	result	in	an	error	in	the	future

		y	=	X[:m/2+1]	+	np.r_[0,X[m/2+1:],0]*1j

Space-time	analysis

133

for	cs	in	RY.T:	#	take	cross	sections

				plt.plot(x,	gaussian_kde(cs)(x))

Space-time	analysis

134

cs[0]

0.86746356478544273

sigma	=	RY.std(axis=0)

plt.plot(years,	sigma)

plt.ylabel('s')

plt.xlabel('year')

plt.title("Sigma-Convergence")

<matplotlib.text.Text	at	0x11439c470>

Space-time	analysis

135

So	the	distribution	is	becoming	less	dispersed	over	time.

But	what	about	internal	mixing?	Do	poor	(rich)	states	remain	poor	(rich),	or	is	there	movement
within	the	distribuiton	over	time?

Markov	Chains

c	=	np.array([

['b','a','c'],

['c','c','a'],

['c','b','c'],

['a','a','b'],

['a','b','c']])

c

Space-time	analysis

136

array([['b',	'a',	'c'],

							['c',	'c',	'a'],

							['c',	'b',	'c'],

							['a',	'a',	'b'],

							['a',	'b',	'c']],	

						dtype='<U1')

m	=	ps.Markov(c)

m.classes

array(['a',	'b',	'c'],	

						dtype='<U1')

m.transitions

array([[1.,		2.,		1.],

							[1.,		0.,		2.],

							[1.,		1.,		1.]])

m.p

matrix([[0.25						,		0.5							,		0.25],

								[0.33333333,		0.								,		0.66666667],

								[0.33333333,		0.33333333,		0.33333333]])

State	Per	Capita	Incomes

ps.examples.explain('us_income')

{'description':	'Per-capita	income	for	the	lower	47	US	states	1929-2010',

	'explanation':	['	*	us48.shp:	shapefile	',

		'	*	us48.dbf:	dbf	for	shapefile',

		'	*	us48.shx:	index	for	shapefile',

		'	*	usjoin.csv:	attribute	data	(comma	delimited	file)'],

	'name':	'us_income'}

Space-time	analysis

137

data	=	ps.pdio.read_files(ps.examples.get_path("us48.dbf"))

W	=	ps.queen_from_shapefile(ps.examples.get_path("us48.shp"))

W.transform	=	'r'

data.STATE_NAME

Space-time	analysis

138

0									Washington

1												Montana

2														Maine

3							North	Dakota

4							South	Dakota

5												Wyoming

6										Wisconsin

7														Idaho

8												Vermont

9										Minnesota

10												Oregon

11					New	Hampshire

12														Iowa

13					Massachusetts

14										Nebraska

15										New	York

16						Pennsylvania

17							Connecticut

18						Rhode	Island

19								New	Jersey

20											Indiana

21												Nevada

22														Utah

23								California

24														Ohio

25										Illinois

26										Delaware

27					West	Virginia

28										Maryland

29										Colorado

30										Kentucky

31												Kansas

32										Virginia

33										Missouri

34											Arizona

35										Oklahoma

36				North	Carolina

37									Tennessee

38													Texas

39								New	Mexico

40											Alabama

41							Mississippi

42											Georgia

43				South	Carolina

44										Arkansas

45									Louisiana

46											Florida

47										Michigan

Name:	STATE_NAME,	dtype:	object

Space-time	analysis

139

f	=	ps.open(ps.examples.get_path("usjoin.csv"))

pci	=	np.array([f.by_col[str(y)]	for	y	in	range(1929,2010)])

pci.shape

(81,	48)

pci	=	pci.T

pci.shape

(48,	81)

cnames	=	f.by_col('Name')

cnames[:10]

['Alabama',

	'Arizona',

	'Arkansas',

	'California',

	'Colorado',

	'Connecticut',

	'Delaware',

	'Florida',

	'Georgia',

	'Idaho']

ids	=	[cnames.index(name)	for	name	in	data.STATE_NAME]

ids[:10]

[44,	23,	16,	31,	38,	47,	46,	9,	42,	20]

Space-time	analysis

140

pci	=	pci[ids]

RY	=	RY[ids]

import	matplotlib.pyplot	as	plt

import	geopandas	as	gpd

shp_link	=	ps.examples.get_path('us48.shp')

tx	=	gpd.read_file(shp_link)

pci29	=	ps.Quantiles(pci[:,0],	k=5)

f,	ax	=	plt.subplots(1,	figsize=(10,	5))

tx.assign(cl=pci29.yb+1).plot(column='cl',	categorical=True,	\

								k=5,	cmap='Greens',	linewidth=0.1,	ax=ax,	\

								edgecolor='grey',	legend=True)

ax.set_axis_off()

plt.title('Per	Capita	Income	1929	Quintiles')

plt.show()

pci2009	=	ps.Quantiles(pci[:,-1],	k=5)

f,	ax	=	plt.subplots(1,	figsize=(10,	5))

tx.assign(cl=pci2009.yb+1).plot(column='cl',	categorical=True,	\

								k=5,	cmap='Greens',	linewidth=0.1,	ax=ax,	\

								edgecolor='grey',	legend=True)

ax.set_axis_off()

plt.title('Per	Capita	Income	2009	Quintiles')

plt.show()

Space-time	analysis

141

convert	to	a	code	cell	to	generate	a	time	series	of
the	maps

for	y	in	range(2010-1929):	pciy	=	ps.Quantiles(pci[:,y],	k=5)	f,	ax	=	plt.subplots(1,	figsize=(10,
5))	tx.assign(cl=pciy.yb+1).plot(column='cl',	categorical=True,	\	k=5,	cmap='Greens',
linewidth=0.1,	ax=ax,	\	edgecolor='grey',	legend=True)	ax.set_axis_off()	plt.title("Per	Capita
Income	%d	Quintiles"%(1929+y))	plt.show()

Put	series	into	cross-sectional	quintiles	(i.e.,	quintiles	for	each	year).

q5	=	np.array([ps.Quantiles(y).yb	for	y	in	pci.T]).transpose()

q5.shape

(48,	81)

q5[:,0]

array([3,	2,	2,	0,	1,	3,	3,	1,	2,	2,	3,	3,	2,	4,	2,	4,	3,	4,	4,	4,	2,	4,	2,

							4,	3,	4,	4,	1,	3,	2,	0,	1,	1,	2,	2,	1,	0,	0,	1,	0,	0,	0,	0,	0,	0,	1,

							1,	4])

Space-time	analysis

142

pci.shape

(48,	81)

pci[0]

array([741,			658,			534,			402,			376,			443,			490,			569,			599,

									582,			614,			658,			864,		1196,		1469,		1527,		1419,		1401,

								1504,		1624,		1595,		1721,		1874,		1973,		2066,		2077,		2116,

								2172,		2262,		2281,		2380,		2436,		2535,		2680,		2735,		2858,

								3078,		3385,		3566,		3850,		4097,		4205,		4381,		4731,		5312,

								5919,		6533,		7181,		7832,		8887,		9965,	10913,	11903,	12431,

							13124,	14021,	14738,	15522,	16300,	17270,	18670,	20026,	20901,

							21917,	22414,	23119,	23878,	25287,	26817,	28632,	30392,	31528,

							32053,	32206,	32934,	34984,	35738,	38477,	40782,	41588,	40619])

we	are	looping	over	the	rows	of	y	which	is	ordered	$T	\times	n$	(rows	are	cross	sections,	row	0	is
the	cross-section	for	period	0.

m5	=	ps.Markov(q5)

m5.classes

array([0,	1,	2,	3,	4])

m5.transitions

array([[729.,			71.,				1.,				0.,				0.],

							[72.,		567.,			80.,				3.,				0.],

							[0.,			81.,		631.,			86.,				2.],

							[0.,				3.,			86.,		573.,			56.],

							[0.,				0.,				1.,			57.,		741.]])

np.set_printoptions(3,	suppress=True)

m5.p

Space-time	analysis

143

matrix([[0.91	,		0.089,		0.001,		0.			,		0.],

								[0.1		,		0.785,		0.111,		0.004,		0.],

								[0.			,		0.101,		0.789,		0.107,		0.003],

								[0.			,		0.004,		0.12	,		0.798,		0.078],

								[0.			,		0.			,		0.001,		0.071,		0.927]])

m5.steady_state	#steady	state	distribution

matrix([[0.208],

								[0.187],

								[0.207],

								[0.188],

								[0.209]])

fmpt	=	ps.ergodic.fmpt(m5.p)	#first	mean	passage	time

fmpt

matrix([[4.814,			11.503,			29.609,			53.386,		103.598],

								[42.048,				5.34	,			18.745,			42.5		,			92.713],

								[69.258,			27.211,				4.821,			25.272,			75.433],

								[84.907,			42.859,			17.181,				5.313,			51.61],

								[98.413,			56.365,			30.66	,			14.212,				4.776]])

For	a	state	with	income	in	the	first	quintile,	it	takes	on	average	11.5	years	for	it	to	first	enter	the
second	quintile,	29.6	to	get	to	the	third	quintile,	53.4	years	to	enter	the	fourth,	and	103.6	years	to
reach	the	richest	quintile.

But,	this	approach	assumes	the	movement	of	a	state	in	the	income	distribution	is	independent	of
the	movement	of	its	neighbors	or	the	position	of	the	neighbors	in	the	distribution.	Does	spatial
context	matter?

Dynamics	of	Spatial	Dependence
Create	a	queen	contiguity	matrix	that	is	row	standardized

w	=	ps.queen_from_shapefile(ps.examples.get_path('us48.shp'))

w.transform	=	'R'

Space-time	analysis

144

mits	=	[ps.Moran(cs,	w)	for	cs	in	RY.T]

res	=	np.array([(m.I,	m.EI,	m.p_sim,	m.z_sim)	for	m	in	mits])

plt.plot(years,	res[:,0],	label='I')

plt.plot(years,	res[:,1],	label='E[I]')

plt.title("Moran's	I")

plt.legend()

<matplotlib.legend.Legend	at	0x7f912bf8d438>

plt.plot(years,	res[:,-1])

plt.ylim(0,7.0)

plt.title('z-values,	I')

<matplotlib.text.Text	at	0x7f912beb4da0>

Space-time	analysis

145

Spatial	Markov

pci.shape

(48,	81)

rpci	=	pci	/	pci.mean(axis=0)

rpci[:,0]

array([1.204,		0.962,		0.977,		0.621,		0.692,		1.097,		1.094,		0.824,

								1.031,		0.974,		1.086,		1.115,		0.944,		1.473,		0.969,		1.873,

								1.255,		1.664,		1.421,		1.492,		0.987,		1.411,		0.896,		1.611,

								1.253,		1.541,		1.677,		0.748,		1.248,		1.031,		0.639,		0.865,

								0.705,		1.009,		0.975,		0.74	,		0.54	,		0.614,		0.779,		0.666,

								0.525,		0.465,		0.564,		0.441,		0.504,		0.673,		0.842,		1.284])

Space-time	analysis

146

rpci[:,0].mean()

0.99999999999999989

sm	=	ps.Spatial_Markov(rpci,	W,	fixed=True,	k=5)

sm.p

matrix([[0.915,		0.075,		0.009,		0.001,		0.],

								[0.066,		0.827,		0.105,		0.001,		0.001],

								[0.005,		0.103,		0.794,		0.095,		0.003],

								[0.			,		0.009,		0.094,		0.849,		0.048],

								[0.			,		0.			,		0.			,		0.062,		0.938]])

for	p	in	sm.P:

				print(p)

Space-time	analysis

147

[[0.963		0.03			0.006		0.					0.]

	[0.06			0.832		0.107		0.					0.]

	[0.					0.14			0.74			0.12			0.]

	[0.					0.036		0.321		0.571		0.071]

	[0.					0.					0.					0.167		0.833]]

[[0.798		0.168		0.034		0.					0.]

	[0.075		0.882		0.042		0.					0.]

	[0.005		0.07			0.866		0.059		0.]

	[0.					0.					0.064		0.902		0.034]

	[0.					0.					0.					0.194		0.806]]

[[0.847		0.153		0.					0.					0.]

	[0.081		0.789		0.129		0.					0.]

	[0.005		0.098		0.793		0.098		0.005]

	[0.					0.					0.094		0.871		0.035]

	[0.					0.					0.					0.102		0.898]]

[[0.885		0.098		0.					0.016		0.]

	[0.039		0.814		0.14			0.					0.008]

	[0.005		0.094		0.777		0.119		0.005]

	[0.					0.023		0.129		0.754		0.094]

	[0.					0.					0.					0.097		0.903]]

[[0.333		0.667		0.					0.					0.]

	[0.048		0.774		0.161		0.016		0.]

	[0.011		0.161		0.747		0.08			0.]

	[0.					0.01			0.062		0.896		0.031]

	[0.					0.					0.					0.024		0.976]]

sm.S

array([[0.435,		0.264,		0.204,		0.068,		0.029],

							[0.134,		0.34	,		0.252,		0.233,		0.041],

							[0.121,		0.211,		0.264,		0.29	,		0.114],

							[0.078,		0.197,		0.254,		0.225,		0.247],

							[0.018,		0.2		,		0.19	,		0.255,		0.337]])

for	f	in	sm.F:

				print(f)

Space-time	analysis

148

[[2.298			28.956			46.143			80.81			279.429]

	[33.865				3.795			22.571			57.238		255.857]

	[43.602				9.737				4.911			34.667		233.286]

	[46.629			12.763				6.257			14.616		198.619]

	[52.629			18.763			12.257				6.						34.103]]

[[7.468				9.706			25.768			74.531		194.234]

	[27.767				2.942			24.971			73.735		193.438]

	[53.575			28.484				3.976			48.763		168.467]

	[72.036			46.946			18.462				4.284		119.703]

	[77.179			52.089			23.604				5.143			24.276]]

[[8.248				6.533			18.388			40.709		112.767]

	[47.35					4.731			11.854			34.175		106.234]

	[69.423			24.767				3.795			22.321			94.38]

	[83.723			39.067			14.3						3.447			76.367]

	[93.523			48.867			24.1						9.8						8.793]]

[[12.88				13.348			19.834			28.473			55.824]

	[99.461				5.064			10.545			23.051			49.689]

	[117.768			23.037				3.944			15.084			43.579]

	[127.898			32.439			14.569				4.448			31.631]

	[138.248			42.789			24.919			10.35					4.056]]

[[56.282				1.5					10.572			27.022		110.543]

	[82.922				5.009				9.072			25.522		109.043]

	[97.177			19.531				5.26				21.424		104.946]

	[127.141			48.741			33.296				3.918			83.522]

	[169.641			91.241			75.796			42.5						2.965]]

sm.summary()

--

																					Spatial	Markov	Test																						

--

Number	of	classes:	5

Number	of	transitions:	3840

Number	of	regimes:	5

Regime	names:	LAG0,	LAG1,	LAG2,	LAG3,	LAG4

--

			Test																			LR																Chi-2

		Stat.														170.659														200.624

				DOF																			60																			60

p-value																0.000																0.000

--

P(H0)											C0									C1									C2									C3									C4

					C0						0.915						0.075						0.009						0.001						0.000

					C1						0.066						0.827						0.105						0.001						0.001

					C2						0.005						0.103						0.794						0.095						0.003

					C3						0.000						0.009						0.094						0.849						0.048

					C4						0.000						0.000						0.000						0.062						0.938

--

Space-time	analysis

149

P(LAG0)									C0									C1									C2									C3									C4

					C0						0.963						0.030						0.006						0.000						0.000

					C1						0.060						0.832						0.107						0.000						0.000

					C2						0.000						0.140						0.740						0.120						0.000

					C3						0.000						0.036						0.321						0.571						0.071

					C4						0.000						0.000						0.000						0.167						0.833

--

P(LAG1)									C0									C1									C2									C3									C4

					C0						0.798						0.168						0.034						0.000						0.000

					C1						0.075						0.882						0.042						0.000						0.000

					C2						0.005						0.070						0.866						0.059						0.000

					C3						0.000						0.000						0.064						0.902						0.034

					C4						0.000						0.000						0.000						0.194						0.806

--

P(LAG2)									C0									C1									C2									C3									C4

					C0						0.847						0.153						0.000						0.000						0.000

					C1						0.081						0.789						0.129						0.000						0.000

					C2						0.005						0.098						0.793						0.098						0.005

					C3						0.000						0.000						0.094						0.871						0.035

					C4						0.000						0.000						0.000						0.102						0.898

--

P(LAG3)									C0									C1									C2									C3									C4

					C0						0.885						0.098						0.000						0.016						0.000

					C1						0.039						0.814						0.140						0.000						0.008

					C2						0.005						0.094						0.777						0.119						0.005

					C3						0.000						0.023						0.129						0.754						0.094

					C4						0.000						0.000						0.000						0.097						0.903

--

P(LAG4)									C0									C1									C2									C3									C4

					C0						0.333						0.667						0.000						0.000						0.000

					C1						0.048						0.774						0.161						0.016						0.000

					C2						0.011						0.161						0.747						0.080						0.000

					C3						0.000						0.010						0.062						0.896						0.031

					C4						0.000						0.000						0.000						0.024						0.976

--

Space-time	analysis

150

Part	II

Part	II

151

Point	Patterns
	IPYNB	

NOTE:	some	of	this	material	has	been	ported	and	adapted	from	"Lab	9"	in	Arribas-Bel
(2016).

This	notebook	covers	a	brief	introduction	on	how	to	visualize	and	analyze	point	patterns.	To
demonstrate	this,	we	will	use	a	dataset	of	all	the	AirBnb	listings	in	the	city	of	Austin	(check	the
Data	section	for	more	information	about	the	dataset).

Before	anything,	let	us	load	up	the	libraries	we	will	use:

%matplotlib	inline

import	numpy	as	np

import	pandas	as	pd

import	geopandas	as	gpd

import	seaborn	as	sns

import	matplotlib.pyplot	as	plt

import	mplleaflet	as	mpll

Data	preparation

Let	us	first	set	the	paths	to	the	datasets	we	will	be	using:

#	Adjust	this	to	point	to	the	right	file	in	your	computer

listings_link	=	'../data/listings.csv.gz'

The	core	dataset	we	will	use	is		listings.csv	,	which	contains	a	lot	of	information	about	each
individual	location	listed	at	AirBnb	within	Austin:

lst	=	pd.read_csv(listings_link)

lst.info()

<class	'pandas.core.frame.DataFrame'>

RangeIndex:	5835	entries,	0	to	5834

Data	columns	(total	92	columns):

id																																		5835	non-null	int64

listing_url																									5835	non-null	object

Points

152

http://darribas.org/gds15/labs/Lab_09.html

scrape_id																											5835	non-null	int64

last_scraped																								5835	non-null	object

name																																5835	non-null	object

summary																													5373	non-null	object

space																															4475	non-null	object

description																									5832	non-null	object

experiences_offered																	5835	non-null	object

neighborhood_overview															3572	non-null	object

notes																															2413	non-null	object

transit																													3492	non-null	object

thumbnail_url																							5542	non-null	object

medium_url																										5542	non-null	object

picture_url																									5835	non-null	object

xl_picture_url																						5542	non-null	object

host_id																													5835	non-null	int64

host_url																												5835	non-null	object

host_name																											5820	non-null	object

host_since																										5820	non-null	object

host_location																							5810	non-null	object

host_about																										3975	non-null	object

host_response_time																		4177	non-null	object

host_response_rate																		4177	non-null	object

host_acceptance_rate																3850	non-null	object

host_is_superhost																			5820	non-null	object

host_thumbnail_url																		5820	non-null	object

host_picture_url																				5820	non-null	object

host_neighbourhood																		4977	non-null	object

host_listings_count																	5820	non-null	float64

host_total_listings_count											5820	non-null	float64

host_verifications																		5835	non-null	object

host_has_profile_pic																5820	non-null	object

host_identity_verified														5820	non-null	object

street																														5835	non-null	object

neighbourhood																							4800	non-null	object

neighbourhood_cleansed														5835	non-null	int64

neighbourhood_group_cleansed								0	non-null	float64

city																																5835	non-null	object

state																															5835	non-null	object

zipcode																													5810	non-null	float64

market																														5835	non-null	object

smart_location																						5835	non-null	object

country_code																								5835	non-null	object

country																													5835	non-null	object

latitude																												5835	non-null	float64

longitude																											5835	non-null	float64

is_location_exact																			5835	non-null	object

property_type																							5835	non-null	object

room_type																											5835	non-null	object

accommodates																								5835	non-null	int64

bathrooms																											5789	non-null	float64

bedrooms																												5829	non-null	float64

beds																																5812	non-null	float64

Points

153

bed_type																												5835	non-null	object

amenities																											5835	non-null	object

square_feet																									302	non-null	float64

price																															5835	non-null	object

weekly_price																								2227	non-null	object

monthly_price																							1717	non-null	object

security_deposit																				2770	non-null	object

cleaning_fee																								3587	non-null	object

guests_included																					5835	non-null	int64

extra_people																								5835	non-null	object

minimum_nights																						5835	non-null	int64

maximum_nights																						5835	non-null	int64

calendar_updated																				5835	non-null	object

has_availability																				5835	non-null	object

availability_30																					5835	non-null	int64

availability_60																					5835	non-null	int64

availability_90																					5835	non-null	int64

availability_365																				5835	non-null	int64

calendar_last_scraped															5835	non-null	object

number_of_reviews																			5835	non-null	int64

first_review																								3827	non-null	object

last_review																									3829	non-null	object

review_scores_rating																3789	non-null	float64

review_scores_accuracy														3776	non-null	float64

review_scores_cleanliness											3778	non-null	float64

review_scores_checkin															3778	non-null	float64

review_scores_communication									3778	non-null	float64

review_scores_location														3779	non-null	float64

review_scores_value																	3778	non-null	float64

requires_license																				5835	non-null	object

license																													1	non-null	float64

jurisdiction_names																		0	non-null	float64

instant_bookable																				5835	non-null	object

cancellation_policy																	5835	non-null	object

require_guest_profile_picture							5835	non-null	object

require_guest_phone_verification				5835	non-null	object

calculated_host_listings_count						5835	non-null	int64

reviews_per_month																			3827	non-null	float64

dtypes:	float64(20),	int64(14),	object(58)

memory	usage:	4.1+	MB

It	turns	out	that	one	record	displays	a	very	odd	location	and,	for	the	sake	of	the	illustration,	we
will	remove	it:

odd	=	lst.loc[lst.longitude>-80,	['longitude',	'latitude']]

odd

Points

154

longitude latitude

5832 -5.093682 43.214991

lst	=	lst.drop(odd.index)

Point	Visualization

The	most	straighforward	way	to	get	a	first	glimpse	of	the	distribution	of	the	data	is	to	plot	their
latitude	and	longitude:

sns.jointplot?

sns.jointplot(x="longitude",	y="latitude",	data=lst);

Points

155

Now	this	does	not	neccesarily	tell	us	much	about	the	dataset	or	the	distribution	of	locations	within
Austin.	There	are	two	main	challenges	in	interpreting	the	plot:	one,	there	is	lack	of	context,	which
means	the	points	are	not	identifiable	over	space	(unless	you	are	so	familiar	with	lon/lat	pairs	that
they	have	a	clear	meaning	to	you);	and	two,	in	the	center	of	the	plot,	there	are	so	many	points	that
it	is	hard	to	tell	any	pattern	other	than	a	big	blurb	of	blue.

Let	us	first	focus	on	the	first	problem,	geographical	context.	The	quickest	and	easiest	way	to
provide	context	to	this	set	of	points	is	to	overlay	a	general	map.	If	we	had	an	image	with	the	map
or	a	set	of	several	data	sources	that	we	could	aggregate	to	create	a	map,	we	could	build	it	from
scratch.	But	in	the	XXI	Century,	the	easiest	is	to	overlay	our	point	dataset	on	top	of	a	web	map.
In	this	case,	we	will	use	Leaflet,	and	we	will	convert	our	underlying		matplotlib		points	with
	mplleaflet	.	The	full	dataset	(+5k	observations)	is	a	bit	too	much	for	leaflet	to	plot	it	directly	on
screen,	so	we	will	obtain	a	random	sample	of	100	points:

Points

156

http://leafletjs.com/

#	NOTE:	`mpll.display`	turned	off	to	be	able	to	compile	the	website,

#							comment	out	the	last	line	of	this	cell	for	rendering	Leaflet	map.

rids	=	np.arange(lst.shape[0])

np.random.shuffle(rids)

f,	ax	=	plt.subplots(1,	figsize=(6,	6))

lst.iloc[rids[:100],	:].plot(kind='scatter',	x='longitude',	y='latitude',	\

																						s=30,	linewidth=0,	ax=ax);

#mpll.display(fig=f,)

This	map	allows	us	to	get	a	much	better	sense	of	where	the	points	are	and	what	type	of	location
they	might	be	in.	For	example,	now	we	can	see	that	the	big	blue	blurb	has	to	do	with	the
urbanized	core	of	Austin.

	bokeh		alternative

Leaflet	is	not	the	only	technology	to	display	data	on	maps,	although	it	is	probably	the	default
option	in	many	cases.	When	the	data	is	larger	than	"acceptable",	we	need	to	resort	to	more
technically	sophisticated	alternatives.	One	option	is	provided	by		bokeh		and	its		datashaded	

Points

157

submodule	(see	here	for	a	very	nice	introduction	to	the	library,	from	where	this	example	has	been
adapted).

Before	we	delve	into		bokeh	,	let	us	reproject	our	original	data	(lon/lat	coordinates)	into	Web
Mercator,	as		bokeh		will	expect	them.	To	do	that,	we	turn	the	coordinates	into	a		GeoSeries	:

from	shapely.geometry	import	Point

xys_wb	=	gpd.GeoSeries(lst[['longitude',	'latitude']].apply(Point,	axis=1),	\

																						crs="+init=epsg:4326")

xys_wb	=	xys_wb.to_crs(epsg=3857)

x_wb	=	xys_wb.apply(lambda	i:	i.x)

y_wb	=	xys_wb.apply(lambda	i:	i.y)

Now	we	are	ready	to	setup	the	plot	in		bokeh	:

from	bokeh.plotting	import	figure,	output_notebook,	show

from	bokeh.tile_providers	import	STAMEN_TERRAIN

output_notebook()

minx,	miny,	maxx,	maxy	=	xys_wb.total_bounds

y_range	=	miny,	maxy

x_range	=	minx,	maxx

def	base_plot(tools='pan,wheel_zoom,reset',plot_width=600,	plot_height=400,	**plot

_args):

				p	=	figure(tools=tools,	plot_width=plot_width,	plot_height=plot_height,

								x_range=x_range,	y_range=y_range,	outline_line_color=None,

								min_border=0,	min_border_left=0,	min_border_right=0,

								min_border_top=0,	min_border_bottom=0,	**plot_args)

				p.axis.visible	=	False

				p.xgrid.grid_line_color	=	None

				p.ygrid.grid_line_color	=	None

				return	p

options	=	dict(line_color=None,	fill_color='#800080',	size=4)

<div	class="bk-banner">

				<a	href="http://bokeh.pydata.org"	target="_blank"	class="bk-logo	bk-logo-small

	bk-logo-notebook">

				Loading	BokehJS	...

</div>

And	good	to	go	for	mapping!

Points

158

https://anaconda.org/jbednar/nyc_taxi/notebook

#	NOTE:	`show`	turned	off	to	be	able	to	compile	the	website,

#							comment	out	the	last	line	of	this	cell	for	rendering.

p	=	base_plot()

p.add_tile(STAMEN_TERRAIN)

p.circle(x=x_wb,	y=y_wb,	**options)

#show(p)

<bokeh.models.renderers.GlyphRenderer	at	0x1052bb5f8>

As	you	can	quickly	see,		bokeh		is	substantially	faster	at	rendering	larger	amounts	of	data.

The	second	problem	we	have	spotted	with	the	first	scatter	is	that,	when	the	number	of	points
grows,	at	some	point	it	becomes	impossible	to	discern	anything	other	than	a	big	blur	of	color.	To
some	extent,	interactivity	gets	at	that	problem	by	allowing	the	user	to	zoom	in	until	every	point	is
an	entity	on	its	own.	However,	there	exist	techniques	that	allow	to	summarize	the	data	to	be	able
to	capture	the	overall	pattern	at	once.	Traditionally,	kernel	density	estimation	(KDE)	has	been	one
of	the	most	common	solutions	by	approximating	a	continuous	surface	of	point	intensity.	In	this
context,	however,	we	will	explore	a	more	recent	alternative	suggested	by	the		datashader		library
(see	the	paper	if	interested	in	more	details).

Arguably,	our	dataset	is	not	large	enough	to	justify	the	use	of	a	reduction	technique	like
datashader,	but	we	will	create	the	plot	for	the	sake	of	the	illustration.	Keep	in	mind,	the
usefulness	of	this	approach	increases	the	more	points	you	need	to	be	plotting.

Points

159

https://github.com/bokeh/datashader
http://www.crest.iu.edu/publications/prints/2014/Cottam2014OutOfCore.pdf

#	NOTE:	`show`	turned	off	to	be	able	to	compile	the	website,

#							comment	out	the	last	line	of	this	cell	for	rendering.

import	datashader	as	ds

from	datashader.callbacks	import	InteractiveImage

from	datashader.colors	import	viridis

from	datashader	import	transfer_functions	as	tf

from	bokeh.tile_providers	import	STAMEN_TONER

p	=	base_plot()

p.add_tile(STAMEN_TONER)

pts	=	pd.DataFrame({'x':	x_wb,	'y':	y_wb})

pts['count']	=	1

def	create_image90(x_range,	y_range,	w,	h):

				cvs	=	ds.Canvas(plot_width=w,	plot_height=h,	x_range=x_range,	y_range=y_range)

				agg	=	cvs.points(pts,	'x',	'y',		ds.count('count'))

				img	=	tf.interpolate(agg.where(agg	>	np.percentile(agg,90)),	\

																									cmap=viridis,	how='eq_hist')

				return	tf.dynspread(img,	threshold=0.1,	max_px=4)

#InteractiveImage(p,	create_image90)

The	key	advandage	of		datashader		is	that	is	decouples	the	point	processing	from	the	plotting.
That	is	the	bit	that	allows	it	to	be	scalable	to	truly	large	datasets	(e.g.	millions	of	points).
Essentially,	the	approach	is	based	on	generating	a	very	fine	grid,	counting	points	within	pixels,
and	encoding	the	count	into	a	color	scheme.	In	our	map,	this	is	not	particularly	effective	because
we	do	not	have	too	many	points	(the	previous	plot	is	probably	a	more	effective	one)	and
esssentially	there	is	a	pixel	per	location	of	every	point.	However,	hopefully	this	example	shows
how	to	create	this	kind	of	scalable	maps.

Kernel	Density	Estimation

A	common	alternative	when	the	number	of	points	grows	is	to	replace	plotting	every	single	point
by	estimating	the	continuous	observed	probability	distribution.	In	this	case,	we	will	not	be
visualizing	the	points	themselves,	but	an	abstracted	surface	that	models	the	probability	of	point
density	over	space.	The	most	commonly	used	method	to	do	this	is	the	so	called	kernel	density
estimate	(KDE).	The	idea	behind	KDEs	is	to	count	the	number	of	points	in	a	continious	way.
Instead	of	using	discrete	counting,	where	you	include	a	point	in	the	count	if	it	is	inside	a	certain
boundary	and	ignore	it	otherwise,	KDEs	use	functions	(kernels)	that	include	points	but	give
different	weights	to	each	one	depending	of	how	far	of	the	location	where	we	are	counting	the
point	is.

Points

160

Creating	a	KDE	is	very	straightfoward	in	Python.	In	its	simplest	form,	we	can	run	the	following
single	line	of	code:

sns.kdeplot(lst['longitude'],	lst['latitude'],	shade=True,	cmap='viridis');

Now,	if	we	want	to	include	additional	layers	of	data	to	provide	context,	we	can	do	so	in	the	same
way	we	would	layer	up	different	elements	in		matplotlib	.	Let	us	load	first	the	Zip	codes	in
Austin,	for	example:

zc	=	gpd.read_file('../data/Zipcodes.geojson')

zc.plot();

Points

161

And,	to	overlay	both	layers:

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

zc.plot(color='white',	linewidth=0.1,	ax=ax)

sns.kdeplot(lst['longitude'],	lst['latitude'],	\

												shade=True,	cmap='Purples',	\

												ax=ax);

ax.set_axis_off()

plt.axis('equal')

plt.show()

Points

162

Exercise

Split	the	dataset	by	type	of	property	and	create	a	map	for	the	five	most	common	types.

Consider	the	following	sorting	of	property	types:

lst.property_type.groupby(lst.property_type)\

																	.count()\

																	.sort_values(ascending=False)

Points

163

property_type

House														3549

Apartment										1855

Condominium									106

Loft																	83

Townhouse												57

Other																47

Bed	&	Breakfast						37

Camper/RV												34

Bungalow													18

Cabin																17

Tent																	11

Villa																	7

Treehouse													7

Earth	House											2

Chalet																1

Hut																			1

Boat																		1

Tipi																		1

Name:	property_type,	dtype:	int64

Points

164

Spatial	Clustering
	IPYNB	

NOTE:	much	of	this	material	has	been	ported	and	adapted	from	"Lab	8"	in	Arribas-Bel
(2016).

This	notebook	covers	a	brief	introduction	to	spatial	regression.	To	demonstrate	this,	we	will	use	a
dataset	of	all	the	AirBnb	listings	in	the	city	of	Austin	(check	the	Data	section	for	more
information	about	the	dataset).

Many	questions	and	topics	are	complex	phenomena	that	involve	several	dimensions	and	are	hard
to	summarize	into	a	single	variable.	In	statistical	terms,	we	call	this	family	of	problems
multivariate,	as	oposed	to	univariate	cases	where	only	a	single	variable	is	considered	in	the
analysis.	Clustering	tackles	this	kind	of	questions	by	reducing	their	dimensionality	-the	number	of
relevant	variables	the	analyst	needs	to	look	at-	and	converting	it	into	a	more	intuitive	set	of
classes	that	even	non-technical	audiences	can	look	at	and	make	sense	of.	For	this	reason,	it	is
widely	use	in	applied	contexts	such	as	policymaking	or	marketing.	In	addition,	since	these
methods	do	not	require	many	preliminar	assumptions	about	the	structure	of	the	data,	it	is	a
commonly	used	exploratory	tool,	as	it	can	quickly	give	clues	about	the	shape,	form	and	content	of
a	dataset.

The	core	idea	of	statistical	clustering	is	to	summarize	the	information	contained	in	several
variables	by	creating	a	relatively	small	number	of	categories.	Each	observation	in	the	dataset	is
then	assigned	to	one,	and	only	one,	category	depending	on	its	values	for	the	variables	originally
considered	in	the	classification.	If	done	correctly,	the	exercise	reduces	the	complexity	of	a	multi-
dimensional	problem	while	retaining	all	the	meaningful	information	contained	in	the	original
dataset.	This	is	because,	once	classified,	the	analyst	only	needs	to	look	at	in	which	category	every
observation	falls	into,	instead	of	considering	the	multiple	values	associated	with	each	of	the
variables	and	trying	to	figure	out	how	to	put	them	together	in	a	coherent	sense.	When	the
clustering	is	performed	on	observations	that	represent	areas,	the	technique	is	often	called
geodemographic	analysis.

The	basic	premise	of	the	exercises	we	will	be	doing	in	this	notebook	is	that,	through	the
characteristics	of	the	houses	listed	in	AirBnb,	we	can	learn	about	the	geography	of	Austin.	In
particular,	we	will	try	to	classify	the	city's	zipcodes	into	a	small	number	of	groups	that	will	allow
us	to	extract	some	patterns	about	the	main	kinds	of	houses	and	areas	in	the	city.

Spatial	clustering

165

http://darribas.org/gds15

Data

Before	anything,	let	us	load	up	the	libraries	we	will	use:

%matplotlib	inline

import	seaborn	as	sns

import	matplotlib.pyplot	as	plt

import	numpy	as	np

import	pandas	as	pd

import	pysal	as	ps

import	geopandas	as	gpd

from	sklearn	import	cluster

from	sklearn.preprocessing	import	scale

sns.set(style="whitegrid")

Let	us	also	set	the	paths	to	all	the	files	we	will	need	throughout	the	tutorial:

#	Adjust	this	to	point	to	the	right	file	in	your	computer

abb_link	=	'../data/listings.csv.gz'

zc_link	=	'../data/Zipcodes.geojson'

Before	anything,	let	us	load	the	main	dataset:

lst	=	pd.read_csv(abb_link)

Originally,	this	is	provided	at	the	individual	level.	Since	we	will	be	working	in	terms	of
neighborhoods	and	areas,	we	will	need	to	aggregate	them	to	that	level.	For	this	illustration,	we
will	be	using	the	following	subset	of	variables:

varis	=	['bedrooms',	'bathrooms',	'beds']

This	will	allow	us	to	capture	the	main	elements	that	describe	the	"look	and	feel"	of	a	property
and,	by	aggregation,	of	an	area	or	neighborhood.	All	of	the	variables	above	are	numerical	values,
so	a	sensible	way	to	aggregate	them	is	by	obtaining	the	average	(of	bedrooms,	etc.)	per	zipcode.

aves	=	lst.groupby('zipcode')[varis].mean()

aves.info()

Spatial	clustering

166

<class	'pandas.core.frame.DataFrame'>

Float64Index:	47	entries,	33558.0	to	78759.0

Data	columns	(total	3	columns):

bedrooms					47	non-null	float64

bathrooms				47	non-null	float64

beds									47	non-null	float64

dtypes:	float64(3)

memory	usage:	1.5	KB

In	addition	to	these	variables,	it	would	be	good	to	include	also	a	sense	of	what	proportions	of
different	types	of	houses	each	zipcode	has.	For	example,	one	can	imagine	that	neighborhoods
with	a	higher	proportion	of	condos	than	single-family	homes	will	probably	look	and	feel	more
urban.	To	do	this,	we	need	to	do	some	data	munging:

types	=	pd.get_dummies(lst['property_type'])

prop_types	=	types.join(lst['zipcode'])\

																		.groupby('zipcode')\

																		.sum()

prop_types_pct	=	(prop_types	*	100.).div(prop_types.sum(axis=1),	axis=0)

prop_types_pct.info()

<class	'pandas.core.frame.DataFrame'>

Float64Index:	47	entries,	33558.0	to	78759.0

Data	columns	(total	18	columns):

Apartment										47	non-null	float64

Bed	&	Breakfast				47	non-null	float64

Boat															47	non-null	float64

Bungalow											47	non-null	float64

Cabin														47	non-null	float64

Camper/RV										47	non-null	float64

Chalet													47	non-null	float64

Condominium								47	non-null	float64

Earth	House								47	non-null	float64

House														47	non-null	float64

Hut																47	non-null	float64

Loft															47	non-null	float64

Other														47	non-null	float64

Tent															47	non-null	float64

Tipi															47	non-null	float64

Townhouse										47	non-null	float64

Treehouse										47	non-null	float64

Villa														47	non-null	float64

dtypes:	float64(18)

memory	usage:	7.0	KB

Now	we	bring	both	sets	of	variables	together:

Spatial	clustering

167

aves_props	=	aves.join(prop_types_pct)

And	since	we	will	be	feeding	this	into	the	clustering	algorithm,	we	will	first	standardize	the
columns:

db	=	pd.DataFrame(\

																	scale(aves_props),	\

																	index=aves_props.index,	\

																	columns=aves_props.columns)\

							.rename(lambda	x:	str(int(x)))

Now	let	us	bring	geography	in:

zc	=	gpd.read_file(zc_link)

zc.plot(color='red');

And	combine	the	two:

zdb	=	zc[['geometry',	'zipcode',	'name']].join(db,	on='zipcode')\

																																									.dropna()

Spatial	clustering

168

To	get	a	sense	of	which	areas	we	have	lost:

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

zc.plot(color='grey',	linewidth=0,	ax=ax)

zdb.plot(color='red',	linewidth=0.1,	ax=ax)

ax.set_axis_off()

plt.show()

Geodemographic	analysis

Spatial	clustering

169

The	main	intuition	behind	geodemographic	analysis	is	to	group	disparate	areas	of	a	city	or	region
into	a	small	set	of	classes	that	capture	several	characteristics	shared	by	those	in	the	same	group.
By	doing	this,	we	can	get	a	new	perspective	not	only	on	the	types	of	areas	in	a	city,	but	on	how
they	are	distributed	over	space.	In	the	context	of	our	AirBnb	data	analysis,	the	idea	is	that	we	can
group	different	zipcodes	of	Austin	based	on	the	type	of	houses	listed	on	the	website.	This	will
give	us	a	hint	into	the	geography	of	AirBnb	in	the	Texan	tech	capital.

Although	there	exist	many	techniques	to	statistically	group	observations	in	a	dataset,	all	of	them
are	based	on	the	premise	of	using	a	set	of	attributes	to	define	classes	or	categories	of	observations
that	are	similar	within	each	of	them,	but	differ	between	groups.	How	similarity	within	groups	and
dissimilarity	between	them	is	defined	and	how	the	classification	algorithm	is	operationalized	is
what	makes	techniques	differ	and	also	what	makes	each	of	them	particularly	well	suited	for
specific	problems	or	types	of	data.	As	an	illustration,	we	will	only	dip	our	toes	into	one	of	these
methods,	K-means,	which	is	probably	the	most	commonly	used	technique	for	statistical
clustering.

Technically	speaking,	we	describe	the	method	and	the	parameters	on	the	following	line	of	code,
where	we	specifically	ask	for	five	groups:

cluster.KMeans?

km5	=	cluster.KMeans(n_clusters=5)

Following	the		sklearn		pipeline	approach,	all	the	heavy-lifting	of	the	clustering	happens	when
we		fit		the	model	to	the	data:

km5cls	=	km5.fit(zdb.drop(['geometry',	'name'],	axis=1).values)

Now	we	can	extract	the	classes	and	put	them	on	a	map:

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

zdb.assign(cl=km5cls.labels_)\

			.plot(column='cl',	categorical=True,	legend=True,	\

									linewidth=0.1,	edgecolor='white',	ax=ax)

ax.set_axis_off()

plt.show()

Spatial	clustering

170

The	map	above	shows	a	clear	pattern:	there	is	a	class	at	the	core	of	the	city	(number	0,	in	red),
then	two	other	ones	in	a	sort	of	"urban	ring"	(number	1	and	3,	in	green	and	brown,	respectively),
and	two	peripheral	sets	of	areas	(number	2	and	4,	yellow	and	green).

This	gives	us	a	good	insight	into	the	geographical	structure,	but	does	not	tell	us	much	about	what
are	the	defining	elements	of	these	groups.	To	do	that,	we	can	have	a	peak	into	the	characteristics
of	the	classes.	For	example,	let	us	look	at	how	the	proportion	of	different	types	of	properties	are
distributed	across	clusters:

cl_pcts	=	prop_types_pct.rename(lambda	x:	str(int(x)))\

																										.reindex(zdb['zipcode'])\

																										.assign(cl=km5cls.labels_)\

																										.groupby('cl')\

																										.mean()

Spatial	clustering

171

f,	ax	=	plt.subplots(1,	figsize=(18,	9))

cl_pcts.plot(kind='barh',	stacked=True,	ax=ax,	\

													cmap='Set2',	linewidth=0)

ax.legend(ncol=1,	loc="right");

A	few	interesting,	albeit	maybe	not	completely	unsurprising,	characteristics	stand	out.	First,	most
of	the	locations	we	have	in	the	dataset	are	either	apartments	or	houses.	However,	how	they	are
distributed	is	interesting.	The	urban	core	-cluster	0-	distinctively	has	the	highest	proportion	of
condos	and	lofts.	The	suburban	ring	-clusters	1	and	3-	is	very	consistent,	with	a	large	share	of
houses	and	less	apartments,	particularly	so	in	the	case	of	cluster	3.	Class	4	has	only	two	types	of
properties,	houses	and	apartments,	suggesting	there	are	not	that	many	places	listed	at	AirBnb.
Finally,	class	3	arises	as	a	more	rural	and	leisure	one:	beyond	apartments,	it	has	a	large	share	of
bed	&	breakfasts.

Mini	Exercise

What	are	the	average	number	of	beds,	bedrooms	and	bathrooms	for	every	class?

Regionalization	analysis:	building	(meaningful)
regions

In	the	case	of	analysing	spatial	data,	there	is	a	subset	of	methods	that	are	of	particular	interest	for
many	common	cases	in	Geographic	Data	Science.	These	are	the	so-called	regionalization
techniques.	Regionalization	methods	can	take	also	many	forms	and	faces	but,	at	their	core,	they
all	involve	statistical	clustering	of	observations	with	the	additional	constraint	that	observations

Spatial	clustering

172

need	to	be	geographical	neighbors	to	be	in	the	same	category.	Because	of	this,	rather	than
category,	we	will	use	the	term	area	for	each	observation	and	region	for	each	class	or	cluster	-
hence	regionalization,	the	construction	of	regions	from	smaller	areas.

As	in	the	non-spatial	case,	there	are	many	different	algorithms	to	perform	regionalization,	and
they	all	differ	on	details	relating	to	the	way	they	measure	(dis)similarity,	the	process	to
regionalize,	etc.	However,	same	as	above	too,	they	all	share	a	few	common	aspects.	In	particular,
they	all	take	a	set	of	input	attributes	and	a	representation	of	space	in	the	form	of	a	binary	spatial
weights	matrix.	Depending	on	the	algorithm,	they	also	require	the	desired	number	of	output
regions	into	which	the	areas	are	aggregated.

In	this	example,	we	are	going	to	create	aggregations	of	zipcodes	into	groups	that	have	areas
where	the	AirBnb	listed	location	have	similar	ratings.	In	other	words,	we	will	create	delineations
for	the	"quality"	or	"satisfaction"	of	AirBnb	users.	In	other	words,	we	will	explore	what	are	the
boundaries	that	separate	areas	where	AirBnb	users	tend	to	be	satisfied	about	their	experience
versus	those	where	the	ratings	are	not	as	high.	To	do	this,	we	will	focus	on	the		review_scores_X	
set	of	variables	in	the	original	dataset:

ratings	=	[i	for	i	in	lst	if	'review_scores_'	in	i]

ratings

['review_scores_rating',

	'review_scores_accuracy',

	'review_scores_cleanliness',

	'review_scores_checkin',

	'review_scores_communication',

	'review_scores_location',

	'review_scores_value']

Similarly	to	the	case	above,	we	now	bring	this	at	the	zipcode	level.	Note	that,	since	they	are	all
scores	that	range	from	0	to	100,	we	can	use	averages	and	we	do	not	need	to	standardize.

rt_av	=	lst.groupby('zipcode')[ratings]\

											.mean()\

											.rename(lambda	x:	str(int(x)))

And	we	link	these	to	the	geometries	of	zipcodes:

zrt	=	zc[['geometry',	'zipcode']].join(rt_av,	on='zipcode')\

																																	.dropna()

zrt.info()

Spatial	clustering

173

<class	'geopandas.geodataframe.GeoDataFrame'>

Int64Index:	43	entries,	0	to	78

Data	columns	(total	9	columns):

geometry																							43	non-null	object

zipcode																								43	non-null	object

review_scores_rating											43	non-null	float64

review_scores_accuracy									43	non-null	float64

review_scores_cleanliness						43	non-null	float64

review_scores_checkin										43	non-null	float64

review_scores_communication				43	non-null	float64

review_scores_location									43	non-null	float64

review_scores_value												43	non-null	float64

dtypes:	float64(7),	object(2)

memory	usage:	3.4+	KB

In	contrast	to	the	standard	clustering	techniques,	regionalization	requires	a	formal	representation
of	topology.	This	is	so	the	algorithm	can	impose	spatial	constraints	during	the	process	of
clustering	the	observations.	We	will	use	exactly	the	same	approach	as	in	the	previous	sections	of
this	tutorial	for	this	and	build	spatial	weights	objects		W		with		PySAL	.	For	the	sake	of	this
illustration,	we	will	consider	queen	contiguity,	but	any	other	rule	should	work	fine	as	long	as
there	is	a	rational	behind	it.	Weights	constructors	currently	only	work	from	shapefiles	on	disk,	so
we	will	write	our		GeoDataFrame		first,	then	create	the		W		object,	and	remove	the	files.

zrt.to_file('tmp')

w	=	ps.queen_from_shapefile('tmp/tmp.shp',	idVariable='zipcode')

#	NOTE:	this	might	not	work	on	Windows

!	rm	-r	tmp

w

<pysal.weights.weights.W	at	0x11bd5ff98>

Now	we	are	ready	to	run	the	regionalization	algorithm.	In	this	case	we	will	use	the		max-p	
(Duque,	Anselin	&	Rey,	2012),	which	does	not	require	a	predefined	number	of	output	regions	but
instead	it	takes	a	target	variable	that	you	want	to	make	sure	a	minimum	threshold	is	met.	In	our
case,	since	it	is	based	on	ratings,	we	will	impose	that	every	resulting	region	has	at	least	10%	of
the	total	number	of	reviews.	Let	us	work	through	what	that	would	mean:

Spatial	clustering

174

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9787.2011.00743.x/abstract

n_rev	=	lst.groupby('zipcode')\

											.sum()\

											['number_of_reviews']\

											.rename(lambda	x:	str(int(x)))\

											.reindex(zrt['zipcode'])

thr	=	np.round(0.1	*	n_rev.sum())

thr

6271.0

This	means	we	want	every	resulting	region	to	be	based	on	at	least	6,271	reviews.	Now	we	have
all	the	pieces,	let	us	glue	them	together	through	the	algorithm:

#	Set	the	seed	for	reproducibility

np.random.seed(1234)

z	=	zrt.drop(['geometry',	'zipcode'],	axis=1).values

maxp	=	ps.region.Maxp(w,	z,	thr,	n_rev.values[:,	None],	initial=1000)

We	can	check	whether	the	solution	is	better	(lower	within	sum	of	squares)	than	we	would	have
gotten	from	a	purely	random	regionalization	process	using	the		cinference		method:

%%time

np.random.seed(1234)

maxp.cinference(nperm=999)

CPU	times:	user	26.2	s,	sys:	185	ms,	total:	26.4	s

Wall	time:	32.1	s

Which	allows	us	to	obtain	an	empirical	p-value:

maxp.cpvalue

0.022

Which	gives	us	reasonably	good	confidence	that	the	solution	we	obtain	is	more	meaningful	than
pure	chance.

With	that	out	of	the	way,	let	us	see	what	the	result	looks	like	on	a	map!	First	we	extract	the	labels:

Spatial	clustering

175

http://pysal.readthedocs.io/en/latest/library/region/maxp.html#pysal.region.maxp.Maxp.cinference

lbls	=	pd.Series(maxp.area2region).reindex(zrt['zipcode'])

f,	ax	=	plt.subplots(1,	figsize=(9,	9))

zrt.assign(cl=lbls.values)\

			.plot(column='cl',	categorical=True,	legend=True,	\

									linewidth=0.1,	edgecolor='white',	ax=ax)

ax.set_axis_off()

plt.show()

The	map	shows	a	clear	geographical	pattern	with	a	western	area,	another	in	the	North	and	a
smaller	one	in	the	East.	Let	us	unpack	what	each	of	them	is	made	of:

Spatial	clustering

176

zrt[ratings].groupby(lbls.values).mean().T

0 1 2

review_scores_rating 96.911817 95.326614 92.502135 96.174762

review_scores_accuracy 9.767500 9.605032 9.548751 9.607459

review_scores_cleanliness 9.678277 9.558179 8.985408 9.599824

review_scores_checkin 9.922450 9.797086 9.765563 9.889927

review_scores_communication 9.932211 9.827390 9.794794 9.898785

review_scores_location 9.644754 9.548761 8.904775 9.596744

review_scores_value 9.678822 9.341224 9.491638 9.614187

Although	very	similar,	there	are	some	patterns	to	be	extracted.	For	example,	the	East	area	seems
to	have	lower	overall	scores.

Exercise
Obtain	a	geodemographic	classification	with	eight	classes	instead	of	five	and	replicate	the
analysis	above

Re-run	the	regionalization	exercise	imposing	a	minimum	of	5%	reviews	per	area

Spatial	clustering

177

Spatial	Regression
	IPYNB	

NOTE:	some	of	this	material	has	been	ported	and	adapted	from	the	Spatial	Econometrics
note	in	Arribas-Bel	(2016b).

This	notebook	covers	a	brief	and	gentle	introduction	to	spatial	econometrics	in	Python.	To	do
that,	we	will	use	a	set	of	Austin	properties	listed	in	AirBnb.

The	core	idea	of	spatial	econometrics	is	to	introduce	a	formal	representation	of	space	into	the
statistical	framework	for	regression.	This	can	be	done	in	many	ways:	by	including	predictors
based	on	space	(e.g.	distance	to	relevant	features),	by	splitting	the	datasets	into	subsets	that	map
into	different	geographical	regions	(e.g.	spatial	regimes),	by	exploiting	close	distance	to	other
observations	to	borrow	information	in	the	estimation	(e.g.	kriging),	or	by	introducing	variables
that	put	in	relation	their	value	at	a	given	location	with	those	in	nearby	locations,	to	give	a	few
examples.	Some	of	these	approaches	can	be	implemented	with	standard	non-spatial	techniques,
while	others	require	bespoke	models	that	can	deal	with	the	issues	introduced.	In	this	short	tutorial,
we	will	focus	on	the	latter	group.	In	particular,	we	will	introduce	some	of	the	most	commonly
used	methods	in	the	field	of	spatial	econometrics.

The	example	we	will	use	to	demonstrate	this	draws	on	hedonic	house	price	modelling.	This	a
well-established	methodology	that	was	developed	by	Rosen	(1974)	that	is	capable	of	recovering
the	marginal	willingness	to	pay	for	goods	or	services	that	are	not	traded	in	the	market.	In	other
words,	this	allows	us	to	put	an	implicit	price	on	things	such	as	living	close	to	a	park	or	in	a
neighborhood	with	good	quality	of	air.	In	addition,	since	hedonic	models	are	based	on	linear
regression,	the	technique	can	also	be	used	to	obtain	predictions	of	house	prices.

Data
Before	anything,	let	us	load	up	the	libraries	we	will	use:

Spatial	Regression

178

http://darribas.org/spa_notes
http://pysal.readthedocs.io/en/latest/library/spreg/regimes.html
https://en.wikipedia.org/wiki/Kriging
https://www.sonoma.edu/users/c/cuellar/econ421/rosen-hedonic.pdf

%matplotlib	inline

import	seaborn	as	sns

import	matplotlib.pyplot	as	plt

import	numpy	as	np

import	pandas	as	pd

import	pysal	as	ps

import	geopandas	as	gpd

sns.set(style="whitegrid")

Let	us	also	set	the	paths	to	all	the	files	we	will	need	throughout	the	tutorial,	which	is	only	the
original	table	of	listings:

#	Adjust	this	to	point	to	the	right	file	in	your	computer

abb_link	=	'../data/listings.csv.gz'

And	go	ahead	and	load	it	up	too:

lst	=	pd.read_csv(abb_link)

Baseline	(nonspatial)	regression

Before	introducing	explicitly	spatial	methods,	we	will	run	a	simple	linear	regression	model.	This
will	allow	us,	on	the	one	hand,	set	the	main	principles	of	hedonic	modeling	and	how	to	interpret
the	coefficients,	which	is	good	because	the	spatial	models	will	build	on	this;	and,	on	the	other
hand,	it	will	provide	a	baseline	model	that	we	can	use	to	evaluate	how	meaningful	the	spatial
extensions	are.

Essentially,	the	core	of	a	linear	regression	is	to	explain	a	given	variable	-the	price	of	a	listing	i
on	AirBnb	(P_i)-	as	a	linear	function	of	a	set	of	other	characteristics	we	will	collectively	call
X_i:

ln(P) = α+ βX + ϵ

For	several	reasons,	it	is	common	practice	to	introduce	the	price	in	logarithms,	so	we	will	do	so
here.	Additionally,	since	this	is	a	probabilistic	model,	we	add	an	error	term	ϵ_i	that	is
assumed	to	be	well-behaved	(i.i.d.	as	a	normal).

i i i

Spatial	Regression

179

For	our	example,	we	will	consider	the	following	set	of	explanatory	features	of	each	listed
property:

x	=	['host_listings_count',	'bathrooms',	'bedrooms',	'beds',	'guests_included']

Additionally,	we	are	going	to	derive	a	new	feature	of	a	listing	from	the		amenities		variable.	Let
us	construct	a	variable	that	takes	1	if	the	listed	property	has	a	pool	and	0	otherwise:

def	has_pool(a):

				if	'Pool'	in	a:

								return	1

				else:

								return	0

lst['pool']	=	lst['amenities'].apply(has_pool)

For	convenience,	we	will	re-package	the	variables:

yxs	=	lst.loc[:,	x	+	['pool',	'price']].dropna()

y	=	np.log(\

											yxs['price'].apply(lambda	x:	float(x.strip('$').replace(',',	'')))\

											+	0.000001

)

To	run	the	model,	we	can	use	the		spreg		module	in		PySAL	,	which	implements	a	standard	OLS
routine,	but	is	particularly	well	suited	for	regressions	on	spatial	data.	Also,	although	for	the	initial
model	we	do	not	need	it,	let	us	build	a	spatial	weights	matrix	that	connects	every	observation	to
its	8	nearest	neighbors.	This	will	allow	us	to	get	extra	diagnostics	from	the	baseline	model.

w	=	ps.knnW_from_array(lst.loc[\

																															yxs.index,	\

																														['longitude',	'latitude']\

].values)

w.transform	=	'R'

w

<pysal.weights.weights.W	at	0x11bdb5358>

At	this	point,	we	are	ready	to	fit	the	regression:

Spatial	Regression

180

m1	=	ps.spreg.OLS(y.values[:,	None],	yxs.drop('price',	axis=1).values,	\

																		w=w,	spat_diag=True,	\

																		name_x=yxs.drop('price',	axis=1).columns.tolist(),	name_y='ln(pr

ice)')

To	get	a	quick	glimpse	of	the	results,	we	can	print	its	summary:

print(m1.summary)

REGRESSION

SUMMARY	OF	OUTPUT:	ORDINARY	LEAST	SQUARES

Data	set												:					unknown

Weights	matrix						:					unknown

Dependent	Variable		:			ln(price)																Number	of	Observations:								57

67

Mean	dependent	var		:						5.1952																Number	of	Variables			:										

	7

S.D.	dependent	var		:						0.9455																Degrees	of	Freedom				:								57

60

R-squared											:						0.4042

Adjusted	R-squared		:						0.4036

Sum	squared	residual:				3071.189																F-statistic											:				651.39

58

Sigma-square								:							0.533																Prob(F-statistic)					:										

	0

S.E.	of	regression		:							0.730																Log	likelihood								:			-6366.1

62

Sigma-square	ML					:							0.533																Akaike	info	criterion	:			12746.3

25

S.E	of	regression	ML:						0.7298																Schwarz	criterion					:			12792.9

44

--

--

												Variable					Coefficient							Std.Error					t-Statistic					Probabili

ty

--

--

												CONSTANT							4.0976886							0.0223530					183.3171506							0.00000

00

	host_listings_count						-0.0000130							0.0001790						-0.0726772							0.94206

55

											bathrooms							0.2947079							0.0194817						15.1273879							0.00000

00

												bedrooms							0.3274226							0.0159666						20.5067654							0.00000

00

Spatial	Regression

181

																beds							0.0245741							0.0097379							2.5235601							0.01164

40

					guests_included							0.0075119							0.0060551							1.2406028							0.21480

30

																pool							0.0888039							0.0221903							4.0019209							0.00006

36

--

--

REGRESSION	DIAGNOSTICS

MULTICOLLINEARITY	CONDITION	NUMBER												9.260

TEST	ON	NORMALITY	OF	ERRORS

TEST																													DF								VALUE											PROB

Jarque-Bera																							2					1358479.047											0.0000

DIAGNOSTICS	FOR	HETEROSKEDASTICITY

RANDOM	COEFFICIENTS

TEST																													DF								VALUE											PROB

Breusch-Pagan	test																6								1414.297											0.0000

Koenker-Bassett	test														6										36.756											0.0000

DIAGNOSTICS	FOR	SPATIAL	DEPENDENCE

TEST																											MI/DF							VALUE											PROB

Lagrange	Multiplier	(lag)									1									255.796											0.0000

Robust	LM	(lag)																			1										13.039											0.0003

Lagrange	Multiplier	(error)							1									278.752											0.0000

Robust	LM	(error)																	1										35.995											0.0000

Lagrange	Multiplier	(SARMA)							2									291.791											0.0000

================================	END	OF	REPORT	===================================

==

Results	are	largely	unsurprising,	but	nonetheless	reassuring.	Both	an	extra	bedroom	and	an	extra
bathroom	increase	the	final	price	around	30%.	Accounting	for	those,	an	extra	bed	pushes	the	price
about	2%.	Neither	the	number	of	guests	included	nor	the	number	of	listings	the	host	has	in	total
have	a	significant	effect	on	the	final	price.

Including	a	spatial	weights	object	in	the	regression	buys	you	an	extra	bit:	the	summary	provides
results	on	the	diagnostics	for	spatial	dependence.	These	are	a	series	of	statistics	that	test	whether
the	residuals	of	the	regression	are	spatially	correlated,	against	the	null	of	a	random	distribution
over	space.	If	the	latter	is	rejected	a	key	assumption	of	OLS,	independently	distributed	error
terms,	is	violated.	Depending	on	the	structure	of	the	spatial	pattern,	different	strategies	have	been
defined	within	the	spatial	econometrics	literature	to	deal	with	them.	If	you	are	interested	in	this,	a
very	recent	and	good	resource	to	check	out	is	Anselin	&	Rey	(2015).	The	main	summary	from	the
diagnostics	for	spatial	dependence	is	that	there	is	clear	evidence	to	reject	the	null	of	spatial
randomness	in	the	residuals,	hence	an	explicitly	spatial	approach	is	warranted.

Spatial	Regression

182

https://geodacenter.asu.edu/category/access/public/spatial-regress

Spatially	lagged	exogenous	regressors	(WX)

The	first	and	most	straightforward	way	to	introduce	space	is	by	"spatially	lagging"	one	of	the
explanatory	variables.	Mathematically,	this	can	be	expressed	as	follows:

ln(P) = α+ βX + δ w X + ϵ

where	$X'i$	is	a	subset	of	X_i,	although	it	could	encompass	all	of	the	explanatory	variables,
and	$w{ij}$	is	the	ij-th	cell	of	a	spatial	weights	matrix	W.	Because	W	assigns	non-zero
values	only	to	spatial	neighbors,	if	W	is	row-standardized	(customary	in	this	context),	then
$\sumj	w{ij}	X'_i$	captures	the	average	value	of	X'_i	in	the	surroundings	of	location	i.	This
is	what	we	call	the	spatial	lag	of	X_i.	Also,	since	it	is	a	spatial	transformation	of	an
explanatory	variable,	the	standard	estimation	approach	-OLS-	is	sufficient:	spatially	lagging	the
variables	does	not	violate	any	of	the	assumptions	on	which	OLS	relies.

Usually,	we	will	want	to	spatially	lag	variables	that	we	think	may	affect	the	price	of	a	house	in	a
given	location.	For	example,	one	could	think	that	pools	represent	a	visual	amenity.	If	that	is	the
case,	then	listed	properties	surrounded	by	other	properties	with	pools	might,	everything	else
equal,	be	more	expensive.	To	calculate	the	number	of	pools	surrounding	each	property,	we	can
build	an	alternative	weights	matrix	that	we	do	not	row-standardize:

w_pool	=	ps.knnW_from_array(lst.loc[\

																															yxs.index,	\

																														['longitude',	'latitude']\

].values)

yxs_w	=	yxs.assign(w_pool=ps.lag_spatial(w_pool,	yxs['pool'].values))

And	now	we	can	run	the	model,	which	has	the	same	setup	as		m1	,	with	the	exception	that	it
includes	the	number	of	AirBnb	properties	with	pools	surrounding	each	house:

m2	=	ps.spreg.OLS(y.values[:,	None],	\

																		yxs_w.drop('price',	axis=1).values,	\

																		w=w,	spat_diag=True,	\

																		name_x=yxs_w.drop('price',	axis=1).columns.tolist(),	name_y='ln(

price)')

print(m2.summary)

REGRESSION

i i

j

∑ ij i
′

i

Spatial	Regression

183

SUMMARY	OF	OUTPUT:	ORDINARY	LEAST	SQUARES

Data	set												:					unknown

Weights	matrix						:					unknown

Dependent	Variable		:			ln(price)																Number	of	Observations:								57

67

Mean	dependent	var		:						5.1952																Number	of	Variables			:										

	8

S.D.	dependent	var		:						0.9455																Degrees	of	Freedom				:								57

59

R-squared											:						0.4044

Adjusted	R-squared		:						0.4037

Sum	squared	residual:				3070.363																F-statistic											:				558.61

39

Sigma-square								:							0.533																Prob(F-statistic)					:										

	0

S.E.	of	regression		:							0.730																Log	likelihood								:			-6365.3

87

Sigma-square	ML					:							0.532																Akaike	info	criterion	:			12746.7

73

S.E	of	regression	ML:						0.7297																Schwarz	criterion					:			12800.0

53

--

--

												Variable					Coefficient							Std.Error					t-Statistic					Probabili

ty

--

--

												CONSTANT							4.0906444							0.0230571					177.4134022							0.00000

00

	host_listings_count						-0.0000108							0.0001790						-0.0603617							0.95186

97

											bathrooms							0.2948787							0.0194813						15.1365024							0.00000

00

												bedrooms							0.3277450							0.0159679						20.5252404							0.00000

00

																beds							0.0246650							0.0097377							2.5329419							0.01133

73

					guests_included							0.0076894							0.0060564							1.2696250							0.20426

95

																pool							0.0725756							0.0257356							2.8200486							0.00481

81

														w_pool							0.0188875							0.0151729							1.2448141							0.21325

08

--

--

REGRESSION	DIAGNOSTICS

MULTICOLLINEARITY	CONDITION	NUMBER												9.605

Spatial	Regression

184

TEST	ON	NORMALITY	OF	ERRORS

TEST																													DF								VALUE											PROB

Jarque-Bera																							2					1368880.320											0.0000

DIAGNOSTICS	FOR	HETEROSKEDASTICITY

RANDOM	COEFFICIENTS

TEST																													DF								VALUE											PROB

Breusch-Pagan	test																7								1565.566											0.0000

Koenker-Bassett	test														7										40.537											0.0000

DIAGNOSTICS	FOR	SPATIAL	DEPENDENCE

TEST																											MI/DF							VALUE											PROB

Lagrange	Multiplier	(lag)									1									255.124											0.0000

Robust	LM	(lag)																			1										13.448											0.0002

Lagrange	Multiplier	(error)							1									276.862											0.0000

Robust	LM	(error)																	1										35.187											0.0000

Lagrange	Multiplier	(SARMA)							2									290.310											0.0000

================================	END	OF	REPORT	===================================

==

Results	are	largely	consistent	with	the	original	model.	Also,	incidentally,	the	number	of	pools
surrounding	a	property	does	not	appear	to	have	any	significant	effect	on	the	price	of	a	given
property.	This	could	be	for	a	host	of	reasons:	maybe	AirBnb	customers	do	not	value	the	number
of	pools	surrounding	a	property	where	they	are	looking	to	stay;	but	maybe	they	do	but	our	dataset
only	allows	us	to	capture	the	number	of	pools	in	other	AirBnb	properties,	which	is	not	necessarily
a	good	proxy	of	the	number	of	pools	in	the	immediate	surroundings	of	a	given	property.

Spatially	lagged	endogenous	regressors	(WY)

In	a	similar	way	to	how	we	have	included	the	spatial	lag,	one	could	think	the	prices	of	houses
surrounding	a	given	property	also	enter	its	own	price	function.	In	math	terms,	this	implies	the
following:

ln(P) = α+ λ w ln(P) + βX + ϵ

This	is	essentially	what	we	call	a	spatial	lag	model	in	spatial	econometrics.	Two	calls	for	caution:

1.	 Unlike	before,	this	specification	does	violate	some	of	the	assumptions	on	which	OLS	relies.
In	particular,	it	is	including	an	endogenous	variable	on	the	right-hand	side.	This	means	we
need	a	new	estimation	method	to	obtain	reliable	coefficients.	The	technical	details	of	this	go
well	beyond	the	scope	of	this	workshop	(although,	if	you	are	interested,	go	check	Anselin	&

i

j

∑ ij i i i

Spatial	Regression

185

https://geodacenter.asu.edu/category/access/public/spatial-regress

Rey,	2015).	But	we	can	offload	those	to		PySAL		and	use	the		GM_Lag		class,	which
implements	the	state-of-the-art	approach	to	estimate	this	model.

2.	 A	more	conceptual	gotcha:	you	might	be	tempted	to	read	the	equation	above	as	the	effect	of
the	price	in	neighboring	locations	j	on	that	of	location	i.	This	is	not	exactly	the	exact
interpretation.	Instead,	we	need	to	realize	this	is	all	assumed	to	be	a	"joint	decission":	rather
than	some	houses	setting	their	price	first	and	that	having	a	subsequent	effect	on	others,	what
the	equation	models	is	an	interdependent	process	by	which	each	owner	sets	her	own	price
taking	into	account	the	price	that	will	be	set	in	neighboring	locations.	This	might	read	a	bit
like	a	technical	subtlety	and,	to	some	extent,	it	is;	but	it	is	important	to	keep	it	in	mind	when
you	are	interpreting	the	results.

Let	us	see	how	you	would	run	this	using		PySAL	:

m3	=	ps.spreg.GM_Lag(y.values[:,	None],	yxs.drop('price',	axis=1).values,	\

																		w=w,	spat_diag=True,	\

																		name_x=yxs.drop('price',	axis=1).columns.tolist(),	name_y='ln(pr

ice)')

print(m3.summary)

Spatial	Regression

186

REGRESSION

SUMMARY	OF	OUTPUT:	SPATIAL	TWO	STAGE	LEAST	SQUARES

--

Data	set												:					unknown

Weights	matrix						:					unknown

Dependent	Variable		:			ln(price)																Number	of	Observations:								57

67

Mean	dependent	var		:						5.1952																Number	of	Variables			:										

	8

S.D.	dependent	var		:						0.9455																Degrees	of	Freedom				:								57

59

Pseudo	R-squared				:						0.4224

Spatial	Pseudo	R-squared:		0.4056

--

--

												Variable					Coefficient							Std.Error					z-Statistic					Probabili

ty

--

--

												CONSTANT							3.7085715							0.1075621						34.4784213							0.00000

00

	host_listings_count						-0.0000587							0.0001765						-0.3324585							0.73954

30

											bathrooms							0.2857932							0.0193237						14.7897969							0.00000

00

												bedrooms							0.3272598							0.0157132						20.8270544							0.00000

00

																beds							0.0239548							0.0095848							2.4992528							0.01244

55

					guests_included							0.0065147							0.0059651							1.0921407							0.27477

13

																pool							0.0891100							0.0218383							4.0804521							0.00004

49

									W_ln(price)							0.0785059							0.0212424							3.6957202							0.00021

93

--

--

Instrumented:	W_ln(price)

Instruments:	W_bathrooms,	W_bedrooms,	W_beds,	W_guests_included,

													W_host_listings_count,	W_pool

DIAGNOSTICS	FOR	SPATIAL	DEPENDENCE

TEST																											MI/DF							VALUE											PROB

Anselin-Kelejian	Test													1										31.545										0.0000

================================	END	OF	REPORT	===================================

==

Spatial	Regression

187

As	we	can	see,	results	are	again	very	similar	in	all	the	other	variable.	It	is	also	very	clear	that	the
estimate	of	the	spatial	lag	of	price	is	statistically	significant.	This	points	to	evidence	that	there	are
processes	of	spatial	interaction	between	property	owners	when	they	set	their	price.

Prediction	performance	of	spatial	models

Even	if	we	are	not	interested	in	the	interpretation	of	the	model	to	learn	more	about	how
alternative	factors	determine	the	price	of	an	AirBnb	property,	spatial	econometrics	can	be	useful.
In	a	purely	predictive	setting,	the	use	of	explicitly	spatial	models	is	likely	to	improve	accuracy	in
cases	where	space	plays	a	key	role	in	the	data	generating	process.	To	have	a	quick	look	at	this
issue,	we	can	use	the	mean	squared	error	(MSE),	a	standard	metric	of	accuracy	in	the	machine
learning	literature,	to	evaluate	whether	explicitly	spatial	models	are	better	than	traditional,	non-
spatial	ones:

from	sklearn.metrics	import	mean_squared_error	as	mse

mses	=	pd.Series({'OLS':	mse(y,	m1.predy.flatten()),	\

																					'OLS+W':	mse(y,	m2.predy.flatten()),	\

																					'Lag':	mse(y,	m3.predy_e)

																				})

mses.sort_values()

Lag						0.531327

OLS+W				0.532402

OLS						0.532545

dtype:	float64

We	can	see	that	the	inclusion	of	the	number	of	surrounding	pools	(which	was	insignificant)	only
marginally	reduces	the	MSE.	The	inclusion	of	the	spatial	lag	of	price,	however,	does	a	better	job
at	improving	the	accuracy	of	the	model.

Exercise
Run	a	regression	including	both	the	spatial	lag	of	pools	and	of	the	price.	How	does	its
predictive	performance	compare?

Spatial	Regression

188

Development	workflow

Dependencies

In	addition	to	the	packages	required	to	run	the	tutorial	(see	the	install	guide	for	more	detail),	you
will	need	the	following	libraries:

	npm		and		node.js	
	gitbook	

	make	

	cp	,		rm	,	and		zip		Unix	utilities.

Workflow
The	overall	structure	of	the	workflow	is	as	follows:

1.	 Develop	material	on	Jupyter	notebooks	and	place	them	under	the		content/		folder.
2.	 When	you	want	to	build	the	website	with	the	new	content	run	on,	the	root	folder:

	>	make	notebooks	

3.	 When	you	want	to	obtain	a	new	version	of	the	pdf	or	ebook	formats,	run	on	the	root	folder:

	>	make	book	

4.	 When	you	want	to	push	a	new	version	to	the	website	to	Github	Pages,	make	sure	to	commit
all	your	changes	first	on	the		master		branch	(assuming	your	remote	is	named	as		origin):

>	git	add	.

>	git	commit	-m	"commit	message"

>	git	push	origin	master

Then	you	can	run:

	>	make	website	

This	will	compile	a	new	version	of	the	website,	pdf,	eupb	and	mobi	files,	check	them	in,
switch	to	the		gh-pages		branch,	check	the	new	version	of	the	website	and	push	it	to	Github.

Development	notes

189

https://nodejs.org
https://github.com/GitbookIO/gitbook
https://www.gnu.org/software/make/

Development	notes

190

	Introduction
	Distribution
	About the authors
	Install guide
	Outline
	Data
	Part I
	Spatial data processing with PySAL
	Geovisualization
	Spatial weights in PySAL
	ESDA with PySAL
	Space-time analysis

	Part II
	Points
	Spatial clustering
	Spatial Regression

	Development notes

