
ENVS363/563
Contents
Information

Overview

Infrastructure

Assessment

Datasets

Bibliography

A - Introduction

Concepts

Hands-on

Do-It-Yourself

B - Open Science

Concepts

Hands-on

Do-It-Yourself

C - Spatial Data

Concepts

Hands-on

Do-It-Yourself

D - Mapping Data

Concepts

Hands-on

Do-It-Yourself

E - Spatial Weights

Concepts

Hands-on
Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/overview
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/assessment
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/datasets
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bibliography
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bA/concepts_A
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bA/lab_A
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bA/diy_A
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/concepts_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/diy_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/concepts_C
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/lab_C
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/diy_C
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/concepts_D
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/lab_D
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/diy_D
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bE/concepts_E
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bE/lab_E
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bE/diy_E

Do-It-Yourself

F - ESDA

Concepts

Hands-on

Do-It-Yourself

G - Clustering

Concepts

Hands-on

Do-It-Yourself

H - Points

Concepts

Hands-on

Do-It-Yourself

Geographic Data Science
Welcome to Geographic Data Science, a course designed by Dr. Dani Arribas-Bel and delivered in its latest instance at the

University of Liverpool in the Autumn of 2021.

Contact

Citation

JOSEJOSE 10.21105/jose.0004210.21105/jose.00042

Dani Arribas-Bel - D.Arribas-Bel [at] liverpool.ac.uk

Senior Lecturer in Geographic Data Science

Office 508, Roxby Building,

University of Liverpool - 74 Bedford St S,

Liverpool, L69 7ZT,

United Kingdom.

@article{darribas_gds_course,
 author = {Dani Arribas-Bel},
 title = {A course on Geographic Data Science},

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bE/diy_E
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bF/concepts_F
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bF/lab_F
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bF/diy_F
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/concepts_G
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/lab_G
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/diy_G
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bH/concepts_H
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bH/lab_H
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bH/diy_H
https://doi.org/10.21105/jose.00042

Overview

Aims

The module provides students with little or no prior knowledge core competences in Geographic Data Science (GDS). This

includes the following:

Advancing their statistical and numerical literacy.

Introducing basic principles of programming and state-of-the-art computational tools for GDS.

Presenting a comprehensive overview of the main methodologies available to the Geographic Data Scientist, as well as

their intuition as to how and when they can be applied.

Focusing on real world applications of these techniques in a geographical and applied context.

Learning outcomes

By the end of the course, students will be able to:

Demonstrate advanced GIS/GDS concepts and be able to use the tools programmatically to import, manipulate and

analyse spatial data in different formats.

Understand the motivation and inner workings of the main methodological approcahes of GDS, both analytical and

visual.

Critically evaluate the suitability of a specific technique, what it can offer and how it can help answer questions of

interest.

Apply a number of spatial analysis techniques and explain how to interpret the results, in a process of turning data into

information.

When faced with a new data-set, work independently using GIS/GDS tools programmatically to extract valuable insight.

Feedback strategy

The student will receive feedback through the following channels:

Formal assessment of three summative assignments: two tests and a computational essay. This will be on the form of

reasoning of the mark assigned as well as comments specifying how the mark could be improved. This will be provided

t t e { cou se o Geog ap c ata Sc e ce},

 year = 2019,
 journal = {The Journal of Open Source Education},
 volume = 2,
 number = 14,
 doi = {https://doi.org/10.21105/jose.00042}
}

Skip to main content

no later than three working weeks after the deadline of the assignment submission.

Direct interaction with Module Leader and demonstrators in the computer labs. This will take place in each of the

scheduled lab sessions of the course.

Online forum maintained by the Module Leader where students can contribute by asking and answering questions related

to the module.

Key texts and learning resources

Access to materials, including lecture slides and lab notebooks, is centralized through the use of a course website available in

the following url:

Specific videos, (computational) notebooks, and other resources, as well as academic references are provided for each

learning block.

In addition, the currently-in-progress book “Geographic Data Science with PySAL and the PyData stack” provides and

additional resource for more in-depth coverage of similar content.

Infrastructure
This page covers a few technical aspects on how the course is built, kept up to date, and how you can create a computational

environment to run all the code it includes.

Software stack

This course is best followed if you can not only read its content but also interact with its code and even branch out to write

your own code and play on your own. For that, you will need to have installed on your computer a series of interconnected

software packages; this is what we call a stack. You can learn more about modern stacks for scientific computing on Block B.

Instructions on how to install a software stack that allows you to run the materials of this course depend on the operating

system you are using. Detailed guides are available for the main systems on the following resource, provided by the

Geographic Data Science Lab:

@gdsl-ul/soft_install

https://darribas.org/gds_course

https://gdsl-ul.github.io/soft_install/

Skip to main content

https://geographicdata.science/book
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/concepts_B
https://www.liverpool.ac.uk/geographic-data-science/
https://gdsl-ul.github.io/soft_install/
https://darribas.org/gds_course
https://gdsl-ul.github.io/soft_install/

Github repository

All the materials for this course and this website are available on the following Github repository:

@darribas/gds_course

If you are interested, you can download a compressed .zip file with the most up-to-date version of all the materials,

including the HTML for this website at:

@darribas/gds_course_zip

Continuous Integration

Following modern software engineering principles, this course is continuously tested and the website is built in an automated

way. This means that, every time a new commit is built, the following two actions are triggered (click on the badges for

detailed logs):

1. Automatic build of the HTML and PDF version of the course

Build Jupyter bookBuild Jupyter book failingfailing

2. Testing of the Python code that makes up the practical sections (“Hands-on” and DIY) of the course

Test GDS CourseTest GDS Course failingfailing

Containerised backend

The course is developed, built and tested using the gds_env , a containerised platform for Geographic Data Science. You

can read more about the gds_env project at:

 darribas/gds_course

 darribas/gds_course

https://darribas.org/gds_env/

Skip to main content

https://github.com/darribas/gds_course
https://github.com/darribas/gds_course/archive/master.zip
https://github.com/darribas/gds_course/actions?query=workflow%3A%22Build+Jupyter+book%22
https://github.com/darribas/gds_course/actions?query=workflow%3A%22Test+GDS+Course%22
https://darribas.org/gds_env/
https://darribas.org/gds_env/
https://darribas.org/gds_env/
https://github.com/darribas/gds_course
https://github.com/darribas/gds_course/archive/master.zip
https://darribas.org/gds_env/

Binder

Binder is service that allows you to run scientific projects in the cloud for free. Binder can spin up “ephemeral” instances

that allow you to run code on the browser without any local setup. It is possible to run the course on Binder by clicking on

the button below:

launchlaunch binderbinder

It is important to note Binder instances are ephemeral in the sense that the data and content created in a session is

NOT saved anywhere and is deleted as soon as the browser tab is closed.

Binder is also the backend this website relies on when you click on the rocket icon () on a page with code. Remember, you

can play with the code interactively but, once you close the tab, all the changes are lost.

Assessment
This course is assessed through four components, each with different weight.

Teams contribution (5%)

Type: Coursework

Continuous assessment

5% of the final mark

Electronic submission only.

Students are encouraged to contribute to the online discussion forum set up for the module. The contribution to the discussion

forum is assessed as an all-or-nothing 5% of the mark that can be obtained by contributing meaninfully to the online

discussion board setup for the course before the end of the first month of the course. Meaningful contributions include

both questions and answers that demonstrate the student is committed to make the forum a more useful resource for the rest

of the group.

Test I (20%)

Information provided on labs.

Test II (25%)

Information provided on labs.

Warning⚠

Skip to main content

https://mybinder.org/
https://mybinder.org/v2/gh/darribas/gds_course/master

o at o p ov ded o abs.

Computational essay (50%)

Here’s the premise. You will take the role of a real-world data scientist tasked to explore a dataset on the city of Toronto

(Canada) and find useful insights for a variety of decision-makers. It does not matter if you have never been to Toronto. In

fact, this will help you focus on what you can learn about the city through the data, without the influence of prior knowledge.

Furthermore, the assessment will not be marked based on how much you know about Toronto but instead about how much

you can show you have learned through analysing data.

A computational essay is an essay whose narrative is supported by code and computational results that are included in the

essay itself. This piece of assessment is equivalent to 2,500 words. However, this is the overall weight. Since you will need to

create not only English narrative but also code and figures, here are the requirements:

Maximum of 750 words (bibliography, if included, does not contribute to the word count)

Up to three maps or figures (a figure may include more than one map and will only count as one but needs to be

integrated in the same matplotlib figure)

Up to one table

The assignment relies on two datasets provided below, and has two parts. Each of these pieces are explained with more detail

below.

Data

To complete the assignment, the following two datasets are provided. Below we show how you can download them and what

they contain.

1. Socio-economic characteristics of Toronto neighbourhoods

This dataset contains a set of polygons representing the official neighbourhoods, as well as socio-economic information

attached to each neighbourhood.

You can read the main file by running:

import geopandas, pandas

neis = geopandas.read_file("https://darribas.org/gds_course/_downloads/a2bdb4c2a088e602c3bd649
neis.info()

Skip to main content

You can find more information on each of the socio-economic variables in the variable list file:

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 140 entries, 0 to 139
Data columns (total 24 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 _id 140 non-null int64
 1 AREA_NAME 140 non-null object
 2 Shape__Area 140 non-null float64
 3 neighbourhood_name 140 non-null object
 4 population2016 140 non-null float64
 5 population_sqkm 140 non-null float64
 6 pop_0-14_yearsold 140 non-null float64
 7 pop_15-24_yearsold 140 non-null float64
 8 pop_25-54_yearsold 140 non-null float64
 9 pop_55-64_yearsold 140 non-null float64
 10 pop_65+_yearsold 140 non-null float64
 11 pop_85+_yearsold 140 non-null float64
 12 hh_median_income2015 140 non-null float64
 13 canadian_citizens 140 non-null float64
 14 deg_bachelor 140 non-null float64
 15 deg_medics 140 non-null float64
 16 deg_phd 140 non-null float64
 17 employed 140 non-null float64
 18 bedrooms_0 140 non-null float64
 19 bedrooms_1 140 non-null float64
 20 bedrooms_2 140 non-null float64
 21 bedrooms_3 140 non-null float64
 22 bedrooms_4+ 140 non-null float64
 23 geometry 140 non-null geometry
dtypes: float64(20), geometry(1), int64(1), object(2)
memory usage: 26.4+ KB

pandas.read_csv("https://darribas.org/gds_course/_downloads/8944151f1b7df7b1f38b79b7a73eb2d0/t

Skip to main content

_id name Category Topic Data Source Characteristic

0 3 population2016 Population Population and
dwellings

Census Profile
98-316-

X2016001
Population, 2016

1 8 population_sqkm Population Population and
dwellings

Census Profile
98-316-

X2016001

Population density per
square kilometre

2 10 pop_0-14_yearsold Population Age characteristics
Census Profile

98-316-
X2016001

Children (0-14 years)

3 11 pop_15-24_yearsold Population Age characteristics
Census Profile

98-316-
X2016001

Youth (15-24 years)

4 12 pop_25-54_yearsold Population Age characteristics
Census Profile

98-316-
X2016001

Working Age (25-54
years)

5 13 pop_55-64_yearsold Population Age characteristics
Census Profile

98-316-
X2016001

Pre-retirement (55-64
years)

6 14 pop_65+_yearsold Population Age characteristics
Census Profile

98-316-
X2016001

Seniors (65+ years)

7 15 pop_85+_yearsold Population Age characteristics
Census Profile

98-316-
X2016001

Older Seniors (85+
years)

8 1018 hh_median_income2015 Income Income of
households in 2015

Census Profile
98-316-

X2016001

Total - Income statistics
in 2015 for private ...

9 1149 canadian_citizens
Immigration

and
citizenship

Citizenship
Census Profile

98-316-
X2016001

Canadian citizens aged
18 and over

10 1711 deg_bachelor Education Highest certificate,
diploma or degree

Census Profile
98-316-

X2016001
Bachelor's degree

11 1713 deg_medics Education Highest certificate,
diploma or degree

Census Profile
98-316-

X2016001

Degree in medicine,
dentistry, veterinar...

12 1714 deg_phd Education Highest certificate,
diploma or degree

Census Profile
98-316-

X2016001
Earned doctorate

Skip to main content

2. Flickr photographs sample

This is a similar dataset to the Tokyo photographs we use in Block H but for the city of Toronto. It is a subsample of the 100

million Yahoo dataset that contains the location of photographs contributed to the Flickr service by its users. You can read it

with:

_id name Category Topic Data Source Characteristic

13 1887 employed Labour Labour force status
Census Profile

98-316-
X2016001

Employed

14 1636 bedrooms_0 Housing Household
characteristics

Census Profile
98-316-

X2016001
No bedrooms

15 1637 bedrooms_1 Housing Household
characteristics

Census Profile
98-316-

X2016001
1 bedroom

16 1638 bedrooms_2 Housing Household
characteristics

Census Profile
98-316-

X2016001
2 bedrooms

17 1639 bedrooms_3 Housing Household
characteristics

Census Profile
98-316-

X2016001
3 bedrooms

18 1641 bedrooms_4+ Housing Household
characteristics

Census Profile
98-316-

X2016001
4 or more bedrooms

photos = pandas.read_csv("https://darribas.org/gds_course/_downloads/fc771c3b1b9e0ee00e875bb2d
photos.info()

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bH/lab_H
http://projects.dfki.uni-kl.de/yfcc100m/

IMPORTANT - Students of ENVS563 will need to source, at least, two additional datasets relating to Toronto. You can use

any dataset that will help you complete the tasks below but, if you need some inspiration, have a look at the Toronto Open

Data Portal:

Part I - Common

This is the one everyone has to do in the same way. Complete the following tasks:

1. Select two variables from the socio-economic dataset

2. Explore the spatial distribution of the data using choropleths. Comment on the details of your maps and interpret the

results

3. Explore the degree of spatial autocorrelation. Describe the concepts behind your approach and interpret your results

Part II - Choose your own adventure

For this one, you need to pick one of the following three options. Only one, and make the most of it.

1. Create a geodemographic classification and interpret the results. In the process, answer the following questions:

What are the main types of neighborhoods you identify?

Which characteristics help you delineate this typology?

If you had to use this classification to target areas in most need, how would you use it? why?

2. Create a regionalisation and interpret the results. In the process, answer at least the following questions:

How is the city partitioned by your data?

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 11 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 id 2000 non-null int64
 1 user_id 2000 non-null object
 2 user_nickname 2000 non-null object
 3 date_taken 2000 non-null object
 4 date_uploaded 2000 non-null int64
 5 title 1932 non-null object
 6 longitude 2000 non-null float64
 7 latitude 2000 non-null float64
 8 accuracy_coordinates 2000 non-null float64
 9 page_url 2000 non-null object
 10 video_url 2000 non-null object
dtypes: float64(3), int64(2), object(6)
memory usage: 172.0+ KB

https://open.toronto.ca/

Skip to main content

https://open.toronto.ca/

y p y y

What do you learn about the geography of the city from the regionalisation?

What would one useful application of this regionalisation in the context of urban policy?

3. Using the photographs, complete the following tasks:

Visualise the dataset appropriately and discuss why you have taken your specific approach

Use DBSCAN to identify areas of the city with high density of photographs, which we will call areas of interest

(AOI). In completing this, answer the following questions:

What parameters have you used to run DBSCAN? Why?

What do the clusters help you learn about areas of interest in the city?

Name one example of how these AOIs can be of use for the city. You can take the perspective of an urban

planner, a policy maker, an operational practitioner (e.g. police, trash collection), an urban entrepreneur, or any

other role you envision.

Marking criteria

This course follows the standard marking criteria (the general ones and those relating to GIS assignments in particular) set by

the School of Environmental Sciences. In addition to these generic criteria, the following specific criteria relating to the code

provided will be used:

0-15: the code does not run and there is no documentation to follow it.

16-39: the code does not run, or runs but it does not produce the expected outcome. There is some documentation

explaining its logic.

40-49: the code runs and produces the expected output. There is some documentation explaining its logic.

50-59: the code runs and produces the expected output. There is extensive documentation explaining its logic.

60-69: the code runs and produces the expected output. There is extensive documentation, properly formatted, explaining

its logic.

70-79: all as above, plus the code design includes clear evidence of skills presented in advanced sections of the course

(e.g. custom methods, list comprehensions, etc.).

80-100: all as above, plus the code contains novel contributions that extend/improve the functionality the student was

provided with (e.g. algorithm optimizations, novel methods to perform the task, etc.).

Datasets
This course uses a wide range of datasets. Many are sourced from different projects (such as the GDS Book); but some have

been pre-processed and are stored as part of the materials for this course. For the latter group, the code used for processing,

from the original state and source of the files to the final product used in this course, is made available.

Skip to main content

https://geographicdata.science/book

The slides used in the clip are available at:

[HTML]

[PDF]

These pages are NOT part of the course syllabus. They are provided for transparency and to facilitate reproducibility

of the project. Consequently, each notebook does not have the depth, detail and pedagogy of the core materials in the

course.

The degree of sophistication of the code in these notebooks is at times above what is expected for a student of this

course. Consequently, if you peak into these notebooks, some parts might not make much sense or seem too

complpicated. Do not worry, it is not part of the course content.

Below are links to the processing of each of those datasets:

Brexit vote

Dar Es Salaam

Liverpool LSOAs

London AirBnb

Tokyo administrative boundaries

Bibliography

Concepts
Here’s where it all starts. In this section we introduce the course and what Geographic Data Science is. We top it up with a

few (optional) further readings for the interested and curious mind.

This course

Let us start from the beginning, here is a snapshot of what this course is about! In the following clip, you will find out about

the philosophy behind the course, how the content is structured, and why this is all designed like this. And, also, a little bit

about the assessment…

Warning⚠

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_A_i.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_A_i.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/data/brexit_prep
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/data/dar_es_salaam_prep
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/data/liv_lsoas_prep
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/data/london_abb_prep
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/data/tokyo_admin_boundaries_prep

The slides used in the clip are available at:

[HTML]

[PDF]

The video also mentions a clip about the digitalisation of our activities. If you want to watch it outside the slides, expand

below.

 Show code cell outputs

What is Geographic Data Science?

Once it is clearer how this course is going to run, let’s dive right into why this course is necessary. The following clip is taken

from a keynote response by Dani Arribas-Bel at the first Spatial Data Science Conference, organised by CARTO and held in

Brooklyn in 2017. The talk provides a bit of background and context, which will hopefully help you understand a bit better

what Geographic Data Science is.

Further readings

To get a better picture, the following readings complement the overview provided above very well:

1. The introductory chapter to “Doing Data Science” schutt2013doing, by Cathy O’Neil and Rachel Schutt is general

overview of why we needed Data Science and where if came from.

0:00 / 0:00

20:50

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_A_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_A_ii.pdf
https://carto.com/spatial-data-conference/2017/
https://carto.com/

2. A slightly more technical historical perspective on where Data Science came from and where it might go can be found in

David Donoho’s recent overview donoho201750.

3. A geographic take on Data Science, proposing more interaction between Geography and Data Science

singleton2019geographic.

Hands-on
Let’s get our hands to the keyboard! In this first “hands-on” session, we will learn about the tools and technologies we will

use to complete this course.

Software infrastructure

The main tool we will use for this course is JupyterLab so, to be able to follow this course interactively and successfully

complete it, you will need to be able to run it.

Check out instructions on the Infrastructure page

Jupyter Lab

Once you have access to an installation of Jupyter Lab, watch the following video, which provides an overview of the tools

and its main components:

Jupyter Notebooks

The main vehicle we will use to access, edit and create content in this course are Jupyter Notebooks. Watch this video for a

tour into their main features and how to master their use:

0:00 / 0:00

Tip

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#software-stack

As mentioned in the clip, notebook cells can contain code or text. You will write plenty of code cells along the way but, to

get familiar with Markdown and how you can style up your text cells, start by reading this resource:

Following this course interactively

Now you are familiar with Jupyter Lab and its notebooks, we are ready to jump on the materials for this course. The

following clip shows you how to access course content and get up to speed in no time!

Do-It-Yourself

Task I: Get up to speed

For this very first task, all you need to to you are all set up to follow this course.

1. Make you have the required setup ready to go. For this, feel free to visit the section on the software stack

0:00 / 0:00

0:00 / 0:00

https://guides.github.com/features/mastering-markdown/

Skip to main content

https://guides.github.com/features/mastering-markdown/

2. Once installed, launch Jupyter Lab and make sure it works as expected

3. With Jupyter Lab running, try to download and access one of the notebooks for the course, pick your favorite!

Task II: Master Markdown

For this second task, we are going to focus on getting to know Markdown a bit better. Remember Markdown is the

technology that’ll allow us to render text within a notebook. To practise its syntax, try to reproduce the following WikiPedia

entry:

Chocolate chip cookie dough
ice cream

Chocolate chip cookie dough ice cream
From Wikipedia, the free encyclopedia

Chocolate chip cookie dough ice cream is a popular ice
cream flavor in which unbaked chunks of chocolate chip
cookie dough are embedded in vanilla flavored ice cream.

History

Do not over think it. Focus on getting the bold, italics, links, headlines and lists correctly formated, but don’t worry

too much about the overall layout. Bonus if you manage to insert the image as well (it does not need to be properly

placed as in the original page)!

Concepts
The ideas behind this block are better communicated through narrative than video or lectures. Hence, the concepts section are

delivered through a few references you are expected to read. These will total up about one and a half hours of your focused

time.

Open Science

The first part of this block is about setting the philosophical background. Why do we care about the processes and tools we

use when we do computational work? Where do the current paradigm come from? Are we on the verge of a new model? For

https://en.wikipedia.org/wiki/Chocolate_chip_cookie_dough_ice_cream

Tip

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-a-jl
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-a-access
https://en.wikipedia.org/wiki/File:Chocolate_chip_cookie_dough_ice_cream_with_orange_spoon.jpg
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Ice_cream
https://en.wikipedia.org/wiki/Chocolate_chip
https://en.wikipedia.org/wiki/Cookie_dough
https://en.wikipedia.org/wiki/Vanilla_ice_cream
https://en.wikipedia.org/wiki/Chocolate_chip_cookie_dough_ice_cream

all of this, we we have two reads to set the tone. Make sure to get those in first thing before moving on to the next bits.

First half of Chapter 1 in “Geographic Data Science with PySAL and the PyData stack” reyABwolf.

The 2018 Atlantic piece “The scientific paper is obsolete” on computational notebooks, by James Somers

somers2018scientific.

Modern Scientific Tools

Once we know a bit more about why we should care about the tools we use, let’s dig into those that will underpin much of

this course. This part is interesting in itself, but will also valuable to better understand the practical aspects of the course.

Again, we have two reads here to set the tone and complement the practical introduction we saw in the Hands-on and DIY

parts of the previous block. We are closing the circle here:

Second half of Chapter 1 in “Geographic Data Science with PySAL and the PyData stack” reyABwolf.

The chapter in the GIS&T Book of Knowledge on computational notebooks, by Geoff Boeing and Dani Arribas-Bel.

Hands-on
Once we know a bit about what computational notebooks are and why we should care about them, let’s jump to using them!

This section introduces you to using Python for manipulating tabular data. Please read through it carefully and pay attention

to how ideas about manipulating data are translated into Python code that “does stuff”. For this part, you can read directly

from the course website, although it is recommended you follow the section interactively by running code on your own.

Once you have read through and have a bit of a sense of how things work, jump on the Do-It-Yourself section, which will

provide you with a challenge to complete it on your own, and will allow you to put what you have already learnt to good use.

Happy hacking!

Data munging

Real world datasets are messy. There is no way around it: datasets have “holes” (missing data), the amount of formats in

which data can be stored is endless, and the best structure to share data is not always the optimum to analyze them, hence the

need to munge them. As has been correctly pointed out in many outlets (e.g.), much of the time spent in what is called

(Geo-)Data Science is related not only to sophisticated modeling and insight, but has to do with much more basic and less

exotic tasks such as obtaining data, processing, turning them into a shape that makes analysis possible, and exploring it to get

to know their basic properties.

For how labor intensive and relevant this aspect is, there is surprisingly very little published on patterns, techniques, and best

practices for quick and efficient data cleaning, manipulation, and transformation. In this session, you will use a few real

world datasets and learn how to process them into Python so they can be transformed and manipulated, if necessary, andSkip to main content

https://gistbok.ucgis.org/
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/diy_B
http://dictionary.reference.com/browse/munge
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0
https://twitter.com/BigDataBorat/status/306596352991830016

analyzed. For this, we will introduce some of the bread and butter of data analysis and scientific computing in Python. These

are fundamental tools that are constantly used in almost any task relating to data analysis.

This notebook covers the basic and the content that is expected to be learnt by every student. We use a prepared dataset that

saves us much of the more intricate processing that goes beyond the introductory level the session is aimed at. As a

companion to this introduction, there is an additional notebook (see link on the website page for Lab 01) that covers how the

dataset used here was prepared from raw data downloaded from the internet, and includes some additional exercises you can

do if you want dig deeper into the content of this lab.

In this notebook, we discuss several patterns to clean and structure data properly, including tidying, subsetting, and

aggregating; and we finish with some basic visualization. An additional extension presents more advanced tricks to

manipulate tabular data.

Before we get our hands data-dirty, let us import all the additional libraries we will need, so we can get that out of the way

and focus on the task at hand:

Dataset

We will be exploring some demographic characteristics in Liverpool. To do that, we will use a dataset that contains

population counts, split by ethnic origin. These counts are aggregated at the Lower Layer Super Output Area (LSOA from

now on). LSOAs are an official Census geography defined by the Office of National Statistics. You can think of them, more

or less, as neighbourhoods. Many data products (Census, deprivation indices, etc.) use LSOAs as one of their main

geographies.

To make things easier, we will read data from a file posted online so, for now, you do not need to download any dataset:

Let us stop for a minute to learn how we have read the file. Here are the main aspects to keep in mind:

We are using the method read_csv from the pandas library, which we have imported with the alias pd .

In this form, all that is required is to pass the path to the file we want to read, which in this case is a web address.

This ensures visualizations are plotted inside the notebook
%matplotlib inline

import os # This provides several system utilities
import pandas as pd # This is the workhorse of data munging in Python
import seaborn as sns # This allows us to efficiently and beautifully plot

Read table
db = pd.read_csv("https://darribas.org/gds_course/content/data/liv_pop.csv",
 index_col='GeographyCode')

Skip to main content

http://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography#output-area-oa

The argument index_col is not strictly necessary but allows us to choose one of the columns as the index of the table.

More on indices below.

We are using read_csv because the file we want to read is in the csv format. However, pandas allows for many

more formats to be read and write. A full list of formats supported may be found here.

To ensure we can access the data we have read, we store it in an object that we call db . We will see more on what we

can do with it below but, for now, just keep in mind that allows us to save the result of read_csv .

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Data, sliced and diced

Now we are ready to start playing and interrogating the dataset! What we have at our fingertips is a table that summarizes, for

each of the LSOAs in Liverpool, how many people live in each, by the region of the world where they were born. We call

these tables DataFrame objects, and they have a lot of functionality built-in to explore and manipulate the data they contain.

Let’s explore a few of those cool tricks!

Structure

The first aspect worth spending a bit of time is the structure of a DataFrame . We can print it by simply typing its name:

Alternative

db = pd.read_csv("liv_pop.csv", index_col="GeographyCode")

db

Skip to main content

https://pandas.pydata.org/docs/user_guide/io.html
file:///home/jovyan/work/code/gds_course/website/_build/html/data/liv_pop.csv

298 rows × 5 columns

Note the printing is cut to keep a nice and compact view, but enough to see its structure. Since they represent a table of data,

DataFrame objects have two dimensions: rows and columns. Each of these is automatically assigned a name in what we

will call its index. When printing, the index of each dimension is rendered in bold, as opposed to the standard rendering for

the content. In the example above, we can see how the column index is automatically picked up from the .csv file’s column

names. For rows, we have specified when reading the file we wanted the column GeographyCode , so that is used. If we

hadn’t specified any, pandas will automatically generate a sequence starting in 0 and going all the way to the number of

rows minus one. This is the standard structure of a DataFrame object, so we will come to it over and over. Importantly,

even when we move to spatial data, our datasets will have a similar structure.

One final feature that is worth mentioning about these tables is that they can hold columns with different types of data. In our

example, this is not used as we have counts (or int , for integer, types) for each column. But it is useful to keep in mind we

can combine this with columns that hold other type of data such as categories, text (str , for string), dates or, as we will see

later in the course, geographic features.

Inspect

Inspecting what it looks like. We can check the top (bottom) X lines of the table by passing X to the method head (tail).

For example, for the top/bottom five lines:

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania

GeographyCode

E01006512 910 106 840 24 0

E01006513 2225 61 595 53 7

E01006514 1786 63 193 61 5

E01006515 974 29 185 18 2

E01006518 1531 69 73 19 4

...

E01033764 2106 32 49 15 0

E01033765 1277 21 33 17 3

E01033766 1028 12 20 8 7

E01033767 1003 29 29 5 1

E01033768 1016 69 111 21 6

Skip to main content

Or getting an overview of the table:

db.head()

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania

GeographyCode

E01006512 910 106 840 24 0

E01006513 2225 61 595 53 7

E01006514 1786 63 193 61 5

E01006515 974 29 185 18 2

E01006518 1531 69 73 19 4

db.tail()

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania

GeographyCode

E01033764 2106 32 49 15 0

E01033765 1277 21 33 17 3

E01033766 1028 12 20 8 7

E01033767 1003 29 29 5 1

E01033768 1016 69 111 21 6

db.info()

<class 'pandas.core.frame.DataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Europe 298 non-null int64
 1 Africa 298 non-null int64
 2 Middle East and Asia 298 non-null int64
 3 The Americas and the Caribbean 298 non-null int64
 4 Antarctica and Oceania 298 non-null int64
dtypes: int64(5)
memory usage: 14.0+ KB Skip to main content

Summarise

Or of the values of the table:

Note how the output is also a DataFrame object, so you can do with it the same things you would with the original table

(e.g. writing it to a file).

In this case, the summary might be better presented if the table is “transposed”:

Equally, common descriptive statistics are also available:

db.describe()

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania

count 298.00000 298.000000 298.000000 298.000000 298.000000

mean 1462.38255 29.818792 62.909396 8.087248 1.949664

std 248.67329 51.606065 102.519614 9.397638 2.168216

min 731.00000 0.000000 1.000000 0.000000 0.000000

25% 1331.25000 7.000000 16.000000 2.000000 0.000000

50% 1446.00000 14.000000 33.500000 5.000000 1.000000

75% 1579.75000 30.000000 62.750000 10.000000 3.000000

max 2551.00000 484.000000 840.000000 61.000000 11.000000

db.describe().T

count mean std min 25% 50% 75% max

Europe 298.0 1462.382550 248.673290 731.0 1331.25 1446.0 1579.75 2551.0

Africa 298.0 29.818792 51.606065 0.0 7.00 14.0 30.00 484.0

Middle East and Asia 298.0 62.909396 102.519614 1.0 16.00 33.5 62.75 840.0

The Americas and the Caribbean 298.0 8.087248 9.397638 0.0 2.00 5.0 10.00 61.0

Antarctica and Oceania 298.0 1.949664 2.168216 0.0 0.00 1.0 3.00 11.0

Obtain minimum values for each table
db.min()

Skip to main content

Note here how we have restricted the calculation of the maximum value to one column only.

Similarly, we can restrict the calculations to a single row:

Create new columns

We can generate new variables by applying operations on existing ones. For example, we can calculate the total population

by area. Here is a couple of ways to do it:

Europe 731
Africa 0
Middle East and Asia 1
The Americas and the Caribbean 0
Antarctica and Oceania 0
dtype: int64

Obtain minimum value for the column `Europe`
db['Europe'].min()

731

Obtain standard deviation for the row `E01006512`,
which represents a particular LSOA
db.loc['E01006512', :].std()

457.8842648530303

Longer, hardcoded
total = db['Europe'] + db['Africa'] + db['Middle East and Asia'] + \
 db['The Americas and the Caribbean'] + db['Antarctica and Oceania']
Print the top of the variable
total.head()

GeographyCode
E01006512 1880
E01006513 2941
E01006514 2108
E01006515 1208
E01006518 1696
dtype: int64

Skip to main content

Note how we are using the command sum , just like we did with max or min before but, in this case, we are not applying it

over columns (e.g. the max of each column), but over rows, so we get the total sum of populations by areas.

Once we have created the variable, we can make it part of the table:

A different spin on this is assigning new values: we can generate new variables with scalars, and modify those:

One shot
total = db.sum(axis=1)
Print the top of the variable
total.head()

GeographyCode
E01006512 1880
E01006513 2941
E01006514 2108
E01006515 1208
E01006518 1696
dtype: int64

db['Total'] = total
db.head()

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006512 910 106 840 24 0 1880

E01006513 2225 61 595 53 7 2941

E01006514 1786 63 193 61 5 2108

E01006515 974 29 185 18 2 1208

E01006518 1531 69 73 19 4 1696

New variable with all ones
db['ones'] = 1
db.head()

Skip to main content

And we can modify specific values too:

Delete columns

Permanently deleting variables is also within reach of one command:

Europe Africa Middle East
and Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total ones

GeographyCode

E01006512 910 106 840 24 0 1880 1

E01006513 2225 61 595 53 7 2941 1

E01006514 1786 63 193 61 5 2108 1

E01006515 974 29 185 18 2 1208 1

E01006518 1531 69 73 19 4 1696 1

db.loc['E01006512', 'ones'] = 3
db.head()

Europe Africa Middle East
and Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total ones

GeographyCode

E01006512 910 106 840 24 0 1880 3

E01006513 2225 61 595 53 7 2941 1

E01006514 1786 63 193 61 5 2108 1

E01006515 974 29 185 18 2 1208 1

E01006518 1531 69 73 19 4 1696 1

del db['ones']
db.head()

Skip to main content

Index-based queries

Here we explore how we can subset parts of a DataFrame if we know exactly which bits we want. For example, if we want

to extract the total and European population of the first four areas in the table, we use loc with lists:

Note that we use squared brackets ([]) to delineate the index of the items we want to subset. In Python, this sequence of

items is called a list. Hence we can see how we can create a list with the names (index IDs) along each of the two dimensions

of a DataFrame (rows and columns), and loc will return a subset of the original table only with the elements queried for.

An alternative to list-based queries is what is called “range-based” queries. These work on the indices of the table but, instead

of requiring the ID of each item we want to retrieve, the operate by requiring only two IDs: the first and last element in a

range of items. Range queries are expressed with a colon (:). For example:

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006512 910 106 840 24 0 1880

E01006513 2225 61 595 53 7 2941

E01006514 1786 63 193 61 5 2108

E01006515 974 29 185 18 2 1208

E01006518 1531 69 73 19 4 1696

eu_tot_first4 = db.loc[['E01006512', 'E01006513', 'E01006514', 'E01006515'], \
 ['Total', 'Europe']]
eu_tot_first4

Total Europe

GeographyCode

E01006512 1880 910

E01006513 2941 2225

E01006514 2108 1786

E01006515 1208 974

range_qry = db.loc["E01006514":"E01006518", "Europe":"Antarctica and Oceania"]
range_qry

Skip to main content

We see how the range query picks up all the elements in between the two IDs specificed. Note that, for this to work, the first

ID in the range needs to be placed before the second one in the table’s index.

Once we know about list and range based queries, we can combine them both! For example, we can specify a range of rows

and a list of columns:

Condition-based queries

However, sometimes, we do not know exactly which observations we want, but we do know what conditions they need to

satisfy (e.g. areas with more than 2,000 inhabitants). For these cases, DataFrames support selection based on conditions.

Let us see a few examples. Suppose we want to select…

… areas with more than 2,500 people in Total:

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania

GeographyCode

E01006514 1786 63 193 61 5

E01006515 974 29 185 18 2

E01006518 1531 69 73 19 4

range_list_qry = db.loc["E01006514":"E01006518", ["Europe", "Total"]]
range_list_qry

Europe Total

GeographyCode

E01006514 1786 2108

E01006515 974 1208

E01006518 1531 1696

m5k = db.loc[db['Total'] > 2500, :]
m5k

Skip to main content

… areas where there are no more than 750 Europeans:

… areas with exactly ten person from Antarctica and Oceania:

Pro-tip: these queries can grow in sophistication with almost no limits. For example, here is a case where we want to find out

the areas where European population is less than half the population:

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006513 2225 61 595 53 7 2941

E01006747 2551 163 812 24 2 3552

E01006751 1843 139 568 21 1 2572

nm5ke = db.loc[db['Europe'] < 750, :]
nm5ke

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01033757 731 39 223 29 3 1025

oneOA = db.loc[db['Antarctica and Oceania'] == 10, :]
oneOA

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006679 1353 484 354 31 10 2232

eu_lth = db.loc[(db['Europe'] * 100. / db['Total']) < 50, :]
eu_lth

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006512 910 106 840 24 0 1880
Skip to main content

All the condition-based queries above are expressed using the loc operator. This is a powerful way and, since it shares

syntax with index-based queries, it is also easier to remember. However, sometimes querying using loc involves a lot of

quotation marks, parenthesis, etc. A more streamlined approach for condition-based queries of rows is provided by the

query engine. Using this approach, we express everything in our query on a single string, or piece of text, and that is

evaluated in the table at once. For example, we can run the same operation as in the first query above with the following

syntax:

If we want to combine operations, this is also possible:

Note that, in these cases, using query results in code that is much more streamlined and easier to read. However, query is

not perfect and, particularly for more sophisticated queries, it does not afford the same degree of flexibility. For example, the

last query we had using loc would not be possible using query .

Combining queries

Now all of these queries can be combined with each other, for further flexibility. For example, imagine we want areas with

more than 25 people from the Americas and Caribbean, but less than 1,500 in total:

Sorting

m5k_query = db.query("Total > 2500")

m5k_query2 = db.query("(Total > 2500) & (Total < 10000)")

ac25_l500 = db.loc[(db['The Americas and the Caribbean'] > 25) & \
 (db['Total'] < 1500), :]
ac25_l500

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01033750 1235 53 129 26 5 1448

E01033752 1024 19 114 33 6 1196

E01033754 1262 37 112 32 9 1452

E01033756 886 31 221 42 5 1185

E01033757 731 39 223 29 3 1025

E01033761 1138 52 138 33 11 1372

Skip to main content

Among the many operations DataFrame objects support, one of the most useful ones is to sort a table based on a given

column. For example, imagine we want to sort the table by total population:

If you inspect the help of db.sort_values , you will find that you can pass more than one column to sort the table by. This

allows you to do so-called hiearchical sorting: sort first based on one column, if equal then based on another column, etc.

Visual exploration

The next step to continue exploring a dataset is to get a feel for what it looks like, visually. We have already learnt how to

unconver and inspect specific parts of the data, to check for particular cases we might be intersted in. Now we will see how to

plot the data to get a sense of the overall distribution of values. For that, we will be using the Python library seaborn .

Histograms.

One of the most common graphical devices to display the distribution of values in a variable is a histogram. Values are

assigned into groups of equal intervals, and the groups are plotted as bars rising as high as the number of values into the

group.

A histogram is easily created with the following command. In this case, let us have a look at the shape of the overall

population:

db_pop_sorted = db.sort_values('Total', ascending=False)
db_pop_sorted.head()

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006747 2551 163 812 24 2 3552

E01006513 2225 61 595 53 7 2941

E01006751 1843 139 568 21 1 2572

E01006524 2235 36 125 24 11 2431

E01006787 2187 53 75 13 2 2330

_ = sns.distplot(db['Total'], kde=False)

Skip to main content

http://stanford.edu/~mwaskom/software/seaborn/index.html

Note we are using sns instead of pd , as the function belongs to seaborn instead of pandas .

We can quickly see most of the areas contain somewhere between 1,200 and 1,700 people, approx. However, there are a few

areas that have many more, even up to 3,500 people.

An additional feature to visualize the density of values is called rug , and adds a little tick for each value on the horizontal

axis:

Kernel Density Plots

Histograms are useful, but they are artificial in the sense that a continuous variable is made discrete by turning the values into

discrete groups. An alternative is kernel density estimation (KDE), which produces an empirical density function:

_ = sns.distplot(db['Total'], kde=False, rug=True)

_ = sns.kdeplot(db['Total'], shade=True)

Skip to main content

Line and bar plots

Another very common way of visually displaying a variable is with a line or a bar chart. For example, if we want to generate

a line plot of the (sorted) total population by area:

For a bar plot all we need to do is to change from plot to plot.bar . Since there are many neighbourhoods, let us plot

only the ten largest ones (which we can retrieve with head):

_ = db['Total'].sort_values(ascending=False).plot()

/opt/conda/lib/python3.7/site-packages/pandas/plotting/_matplotlib/core.py:1235: UserWarning: F
 ax.set_xticklabels(xticklabels)

_ = db['Total'].sort_values(ascending=False)\
 .head(10)\
 .plot.bar()

Skip to main content

We can turn the plot around by displaying the bars horizontally (see how it’s just changing bar for barh). Let’s display

now the top 50 areas and, to make it more readable, let us expand the plot’s height:

_ = db['Total'].sort_values()\
 .head(50)\
 .plot.barh(figsize=(6, 20))

Skip to main content

Un/tidy data

Skip to main content

This section is a bit more advanced and hence considered optional. Fell free to skip it, move to the next, and return

later when you feel more confident.

Once you can read your data in, explore specific cases, and have a first visual approach to the entire set, the next step can be

preparing it for more sophisticated analysis. Maybe you are thinking of modeling it through regression, or on creating

subgroups in the dataset with particular characteristics, or maybe you simply need to present summary measures that relate to

a slightly different arrangement of the data than you have been presented with.

For all these cases, you first need what statistician, and general R wizard, Hadley Wickham calls “tidy data”. The general

idea to “tidy” your data is to convert them from whatever structure they were handed in to you into one that allows

convenient and standardized manipulation, and that supports directly inputting the data into what he calls “tidy” analysis

tools. But, at a more practical level, what is exactly “tidy data”? In Wickham’s own words:

He then goes on to list the three fundamental characteristics of “tidy data”:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

If you are further interested in the concept of “tidy data”, I recommend you check out the original paper (open access) and

the public repository associated with it.

Let us bring in the concept of “tidy data” to our own Liverpool dataset. First, remember its structure:

Warning⚠

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy.

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending

on how rows, columns and tables are matched up with observations, variables and types.

db.head()

Skip to main content

http://www.jstatsoft.org/v59/i10/
https://github.com/hadley/tidy-data

Thinking through tidy lenses, this is not a tidy dataset. It is not so for each of the three conditions:

Starting by the last one (each type of observational unit forms a table), this dataset actually contains not one but two

observational units: the different areas of Liverpool, captured by GeographyCode ; and subgroups of an area. To tidy up

this aspect, we can create two different tables:

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania Total

GeographyCode

E01006512 910 106 840 24 0 1880

E01006513 2225 61 595 53 7 2941

E01006514 1786 63 193 61 5 2108

E01006515 974 29 185 18 2 1208

E01006518 1531 69 73 19 4 1696

Assign column `Total` into its own as a single-column table
db_totals = db[['Total']]
db_totals.head()

Total

GeographyCode

E01006512 1880

E01006513 2941

E01006514 2108

E01006515 1208

E01006518 1696

Create a table `db_subgroups` that contains every column in `db` without `Total`
db_subgroups = db.drop('Total', axis=1)
db_subgroups.head()

Skip to main content

Note we use drop to exclude “Total”, but we could also use a list with the names of all the columns to keep. Additionally,

notice how, in this case, the use of drop (which leaves db untouched) is preferred to that of del (which permanently

removes the column from db).

At this point, the table db_totals is tidy: every row is an observation, every table is a variable, and there is only one

observational unit in the table.

The other table (db_subgroups), however, is not entirely tidied up yet: there is only one observational unit in the table,

true; but every row is not an observation, and there are variable values as the names of columns (in other words, every

column is not a variable). To obtain a fully tidy version of the table, we need to re-arrange it in a way that every row is a

population subgroup in an area, and there are three variables: GeographyCode , population subgroup, and population count

(or frequency).

Because this is actually a fairly common pattern, there is a direct way to solve it in pandas :

The method stack , well, “stacks” the different columns into rows. This fixes our “tidiness” problems but the type of object

that is returning is not a DataFrame :

Europe Africa Middle East and
Asia

The Americas and the
Caribbean

Antarctica and
Oceania

GeographyCode

E01006512 910 106 840 24 0

E01006513 2225 61 595 53 7

E01006514 1786 63 193 61 5

E01006515 974 29 185 18 2

E01006518 1531 69 73 19 4

tidy_subgroups = db_subgroups.stack()
tidy_subgroups.head()

GeographyCode
E01006512 Europe 910
 Africa 106
 Middle East and Asia 840
 The Americas and the Caribbean 24
 Antarctica and Oceania 0
dtype: int64

type(tidy_subgroups)

Skip to main content

It is a Series , which really is like a DataFrame , but with only one column. The additional information

(GeographyCode and population group) are stored in what is called an multi-index. We will skip these for now, so we

would really just want to get a DataFrame as we know it out of the Series . This is also one line of code away:

To which we can apply to renaming to make it look better:

Now our table is fully tidied up!

Grouping, transforming, aggregating

One of the advantage of tidy datasets is they allow to perform advanced transformations in a more direct way. One of the

most common ones is what is called “group-by” operations. Originated in the world of databases, these operations allow you

to group observations in a table by one of its labels, index, or category, and apply operations on the data group by group.

pandas.core.series.Series

Unfold the multi-index into different, new columns
tidy_subgroupsDF = tidy_subgroups.reset_index()
tidy_subgroupsDF.head()

GeographyCode level_1 0

0 E01006512 Europe 910

1 E01006512 Africa 106

2 E01006512 Middle East and Asia 840

3 E01006512 The Americas and the Caribbean 24

4 E01006512 Antarctica and Oceania 0

tidy_subgroupsDF = tidy_subgroupsDF.rename(columns={'level_1': 'Subgroup', 0: 'Freq'})
tidy_subgroupsDF.head()

GeographyCode Subgroup Freq

0 E01006512 Europe 910

1 E01006512 Africa 106

2 E01006512 Middle East and Asia 840

3 E01006512 The Americas and the Caribbean 24

4 E01006512 Antarctica and Oceania 0

Skip to main content

For example, given our tidy table with population subgroups, we might want to compute the total sum of population by each

group. This task can be split into two different ones:

Group the table in each of the different subgroups.

Compute the sum of Freq for each of them.

To do this in pandas , meet one of its workhorses, and also one of the reasons why the library has become so popular: the

groupby operator.

The object pop_grouped still hasn’t computed anything, it is only a convenient way of specifying the grouping. But this

allows us then to perform a multitude of operations on it. For our example, the sum is calculated as follows:

Similarly, you can also obtain a summary of each group:

pop_grouped = tidy_subgroupsDF.groupby('Subgroup')
pop_grouped

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f3d01696ad0>

pop_grouped.sum()

Freq

Subgroup

Africa 8886

Antarctica and Oceania 581

Europe 435790

Middle East and Asia 18747

The Americas and the Caribbean 2410

pop_grouped.describe()

Skip to main content

We will not get into it today as it goes beyond the basics we want to conver, but keep in mind that groupby allows you to

not only call generic functions (like sum or describe), but also your own functions. This opens the door for virtually any

kind of transformation and aggregation possible.

Additional lab materials

The following provide a good “next step” from some of the concepts and tools covered in the lab and DIY sections of this

block:

This NY Times article does a good job at conveying the relevance of data “cleaning” and munging.

A good introduction to data manipulation in Python is Wes McKinney’s “Python for Data Analysis”

mckinney2012python.

To explore further some of the visualization capabilities in at your fingertips, the Python library seaborn is an excellent

choice. Its online tutorial is a fantastic place to start.

A good extension is Hadley Wickham’ “Tidy data” paper Wickham:2014:JSSOBK:v59i10, which presents a very popular

way of organising tabular data for efficient manipulation.

Do-It-Yourself

This section is all about you taking charge of the steering wheel and choosing your own adventure. For this block, we are

going to use what we’ve learnt before to take a look at a dataset of casualties in the war in Afghanistan. The data was

originally released by Wikileaks, and the version we will use is published by The Guardian.

Data preparation

Freq

count mean std min 25% 50% 75% max

Subgroup

Africa 298.0 29.818792 51.606065 0.0 7.00 14.0 30.00 484.0

Antarctica and Oceania 298.0 1.949664 2.168216 0.0 0.00 1.0 3.00 11.0

Europe 298.0 1462.382550 248.673290 731.0 1331.25 1446.0 1579.75 2551.0

Middle East and Asia 298.0 62.909396 102.519614 1.0 16.00 33.5 62.75 840.0

The Americas and the Caribbean 298.0 8.087248 9.397638 0.0 2.00 5.0 10.00 61.0

import pandas

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/diy_B
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0
http://stanford.edu/~mwaskom/software/seaborn/tutorial.html
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B

Before you can set off on your data journey, the dataset needs to be read, and there’s a couple of details we will get out of the

way so it is then easier for you to start working.

The data are published on a Google Sheet you can check out at:

As you will see, each row includes casualties recorded month by month, split by Taliban, Civilians, Afghan forces, and

NATO.

To read it into a Python session, we need to slightly modify the URL to access it into:

Note how we split the url into three lines so it is more readable in narrow screens. The result however, stored in url , is the

same as one long string.

This allows us to read the data straight into a DataFrame, as we have done in the previous session:

Note also we use the skiprows=[0, -1] to avoid reading the top (0) and bottom (-1) rows which, if you check on the

Google Sheet, involves the title of the table.

Now we are good to go!

https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1

url = ("https://docs.google.com/spreadsheets/d/"\
 "1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/"\
 "export?format=csv&gid=1")
url

'https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/export?fo

db = pandas.read_csv(url, skiprows=[0, -1], thousands=",")

db.head()

Year Month Taliban Civilians Afghan forces Nato (detailed in spreadsheet) Nato - official figures

0 2004.0 January 15 51 23 NaN 11.0

1 2004.0 February NaN 7 4 5 2.0

2 2004.0 March 19 2 NaN 2 3.0

3 2004.0 April 5 3 19 NaN 3.0

4 2004.0 May 18 29 56 6 9.0Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B
https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1

Tasks

Now, the challenge is to put to work what we have learnt in this block. For that, the suggestion is that you carry out an

analysis of the Afghan Logs in a similar way as how we looked at population composition in Liverpool. These are of course

very different datasets reflecting immensely different realities. Their structure, however, is relatively parallel: both capture

counts aggregated by a spatial (neighbourhood) or temporal unit (month), and each count is split by a few categories.

Try to answer the following questions:

Obtain the minimum number of civilian casualties (in what month was that?)

How many NATO casualties were registered in August 2008?

What is the month with the most total number of casualties?

Can you make a plot of the distribution of casualties over time?

Concepts
This blocks explore spatial data, old and new. We start with an overview of traditional datasets, discussing their benefits and

challenges for social scientists; then we move on to new forms of data, and how they pose different challenges, but also

exciting opportunities. These two areas are covered with clips and slides that can be complemented with readings. Once

conceptual areas are covered, we jump into working with spatial data in Python, which will prepare you for your own

adventure in exploring spatial data.

“Good old” (geo) data

To understand what is new in new forms of data, it is useful to begin by considering traditional data. In this section we look

at the main characteristics of traditional data available to Social Scientists. Warm up before the main part coming up next!

Before you jump on the clip, please watch the following video by the US Census Burearu, which will be discussed:

The US Census puts every American on the map

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/lab_C
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/diy_C
https://www.youtube.com/watch?v=RY2J8ETZzLo

The slides used in the clip are available at:

[HTML]

[PDF]

The slides used in the clip are available at:

[HTML]

[PDF]

Then go on to the following clip, which will help you put the Census Bureau’s view in perspective:

New forms of (geo) data

This section discusses two references in particular:

“Data Ex-Machina”, by Lazer & Radford lazer2017data

And the accidental data paper by Dani Arribas-Bel ArribasBel201445

Although both papers are discussed in the clip, if you are interested in the ideas mentioned, do go to the original sources as

they provide much more detail and nuance.

Hands-on

Mapping in Python

0:00 / 0:00

0:00 / 0:00

Slides

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_C_i.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_C_i.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_C_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_C_ii.pdf

In this lab, we will learn how to load, manipulate and visualize spatial data. In some senses, spatial data are usually included

simply as “one more column” in a table. However, spatial is special sometimes and there are few aspects in which

geographic data differ from standard numerical tables. In this session, we will extend the skills developed in the previous one

about non-spatial data, and combine them. In the process, we will discover that, although with some particularities, dealing

with spatial data in Python largely resembles dealing with non-spatial data.

Datasets

To learn these concepts, we will be playing with three main datasets. Same as in the previous block, these datasets can be

loaded dynamically from the web, or you can download them manually, keep a copy on your computer, and load them from

there.

Make sure you are connected to the internet when you run these cells as they need to access data hosted online

Cities

First we will use a polygon geography. We will use an open dataset that contains the boundaries of Spanish cities. We can

read it into an object named cities by:

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

import geopandas
import osmnx
import contextily as cx
import matplotlib.pyplot as plt

/tmp/ipykernel_7827/2961306976.py:1: UserWarning: Shapely 2.0 is installed, but because PyGEOS

import os
os.environ['USE_PYGEOS'] = '0'
import geopandas

In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS
 import geopandas

Important

cities = geopandas.read_file("https://ndownloader.figshare.com/files/20232174")

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure

Streets

In addition to polygons, we will play with a line layer. For that, we are going to use a subset of street network from the

Spanish city of Madrid.

The data is available on the following web address:

And you can read it into an object called streets with:

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

Bars

The final dataset we will rely on is a set of points demarcating the location of bars in Madrid. To obtain it, we will use

osmnx , a Python library that allows us to query OpenStreetMap. Note that we use the method pois_from_place , which

queries for points of interest (POIs, or pois) in a particular place (Madrid in this case). In addition, we can specify a set of

tags to delimit the query. We use this to ask only for amenities of the type “bar”:

cities = geopandas.read_file("../data/web_cache/cities.gpkg")

url = (
 "https://github.com/geochicasosm/lascallesdelasmujeres"
 "/raw/master/data/madrid/final_tile.geojson"
)
url

'https://github.com/geochicasosm/lascallesdelasmujeres/raw/master/data/madrid/final_tile.geojso

streets = geopandas.read_file(url)

streets = geopandas.read_file("../data/web_cache/streets.gpkg")

pois = osmnx.geometries_from_place(
 "Madrid, Spain", tags={"amenity": "bar"}
)

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure
https://www.openstreetmap.org/

You do not need to know at this point what happens behind the scenes when we run geometries_from_place but, if you

are curious, we are making a query to OpenStreetMap (almost as if you typed “bars in Madrid, Spain” within Google Maps)

and getting the response as a table of data, instead of as a website with an interactive map. Pretty cool, huh?

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

Inspecting spatial data

The most direct way to get from a file to a quick visualization of the data is by loading it as a GeoDataFrame and calling

the plot command. The main library employed for all of this is geopandas which is a geospatial extension of the

pandas library, already introduced before. geopandas supports the same functionality that pandas does, plus a wide

range of spatial extensions that make manipulation and general “munging” of spatial data similar to non-spatial tables.

In two lines of code, we will obtain a graphical representation of the spatial data contained in a file that can be in many

formats; actually, since it uses the same drivers under the hood, you can load pretty much the same kind of vector files that

Desktop GIS packages like QGIS permit. Let us start by plotting single layers in a crude but quick form, and we will build

style and sophistication into our plots later on.

Polygons

Now lsoas is a GeoDataFrame . Very similar to a traditional, non-spatial DataFrame , but with an additional column

called geometry :

If you are using an old version of osmnx (<1.0), replace the code in the cell above for:

You can check the version you are using with the following snipet:

Attention

pubs = osmnx.pois.pois_from_place(
 "Liverpool, UK", tags={"amenity": "bar"}
)

osmnx.__version__

pois = geopandas.read_parquet("../data/web_cache/pois_bars_madrid.parquet")

Skip to main content

https://www.openstreetmap.org/
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure

This allows us to quickly produce a plot by executing the following line:

This might not be the most aesthetically pleasant visual representation of the LSOAs geography, but it is hard to argue it is

not quick to produce. We will work on styling and customizing spatial plots later on.

Pro-tip: if you call a single row of the geometry column, it’ll return a small plot ith the shape:

cities.head()

city_id n_building geometry

0 ci000 2348 POLYGON ((385390.071 4202949.446, 384488.697 4...

1 ci001 2741 POLYGON ((214893.033 4579137.558, 215258.185 4...

2 ci002 5472 POLYGON ((690674.281 4182188.538, 691047.526 4...

3 ci003 14608 POLYGON ((513378.282 4072327.639, 513408.853 4...

4 ci004 2324 POLYGON ((206989.081 4129478.031, 207275.702 4...

cities.plot()

<Axes: >

cities.loc[0, 'geometry']

Skip to main content

Lines

Similarly to the polygon case, if we pick the "geometry" column of a table with lines, a single row will display the

geometry as well:

A quick plot is similarly generated by:

streets.loc[0, 'geometry']

streets.plot()

Skip to main content

Again, this is not the prettiest way to display the streets maybe, and you might want to change a few parameters such as

colors, etc. All of this is possible, as we will see below, but this gives us a quick check of what lines look like.

Points

Points take a similar approach for quick plotting:

<Axes: >

pois.plot()

<Axes: >

Skip to main content

Styling plots

It is possible to tweak several aspects of a plot to customize if to particular needs. In this section, we will explore some of the

basic elements that will allow us to obtain more compelling maps.

NOTE: some of these variations are very straightforward while others are more intricate and require tinkering with the

internal parts of a plot. They are not necessarily organized by increasing level of complexity.

Changing transparency

The intensity of color of a polygon can be easily changed through the alpha attribute in plot. This is specified as a value

betwee zero and one, where the former is entirely transparent while the latter is the fully opaque (maximum intensity):

Removing axes

Although in some cases, the axes can be useful to obtain context, most of the times maps look and feel better without them.

Removing the axes involves wrapping the plot into a figure, which takes a few more lines of aparently useless code but that,

in time, it will allow you to tweak the map further and to create much more flexible designs:

pois.plot(alpha=0.1)

<Axes: >

Skip to main content

Let us stop for a second a study each of the previous lines:

1. We have first created a figure named f with one axis named ax by using the command plt.subplots (part of the

library matplotlib , which we have imported at the top of the notebook). Note how the method is returning two

elements and we can assign each of them to objects with different name (f and ax) by simply listing them at the front

of the line, separated by commas.

2. Second, we plot the geographies as before, but this time we tell the function that we want it to draw the polygons on the

axis we are passing, ax . This method returns the axis with the geographies in them, so we make sure to store it on an

object with the same name, ax .

3. On the third line, we effectively remove the box with coordinates.

4. Finally, we draw the entire plot by calling plt.show() .

Adding a title

Adding a title is an extra line, if we are creating the plot within a figure, as we just did. To include text on top of the figure:

Setup figure and axis
f, ax = plt.subplots(1)
Plot layer of polygons on the axis
cities.plot(ax=ax)
Remove axis frames
ax.set_axis_off()
Display
plt.show()

Skip to main content

Changing the size of the map

The size of the plot is changed equally easily in this context. The only difference is that it is specified when we create the

figure with the argument figsize . The first number represents the width, the X axis, and the second corresponds with the

height, the Y axis.

Setup figure and axis
f, ax = plt.subplots(1)
Add layer of polygons on the axis
streets.plot(ax=ax)
Add figure title
f.suptitle("Streets in Madrid")
Display
plt.show()

Setup figure and axis with different size
f, ax = plt.subplots(1, figsize=(12, 12))
Add layer of polygons on the axis
cities.plot(ax=ax)
Display
plt.show()

Skip to main content

Modifying borders

Border lines sometimes can distort or impede proper interpretation of a map. In those cases, it is useful to know how they can

be modified. Although not too complicated, the way to access borders in geopandas is not as straightforward as it is the

case for other aspects of the map, such as size or frame. Let us first see the code to make the lines thicker and black, and then

we will work our way through the different steps:

Skip to main content

Note how the lines are thicker. In addition, all the polygons are colored in the same (default) color, light red. However,

because the lines are thicker, we can only see the polygon filling for those cities with an area large enough.

Let us examine line by line what we are doing in the code snippet:

Setup figure and axis
f, ax = plt.subplots(1, figsize=(12, 12))
Add layer of polygons on the axis, set fill color (`facecolor`) and boundary
color (`edgecolor`)
cities.plot(
 linewidth=1,
 facecolor='red',
 edgecolor='black',
 ax=ax
);

Skip to main content

y g pp

We begin by creating the figure (f) object and one axis inside it (ax) where we will plot the map.

Then, we call plot as usual, but pass in two new arguments: linewidth for the width of the line; facecolor , to

control the color each polygon is filled with; and edgecolor , to control the color of the boundary.

This approach works very similarly with other geometries, such as lines. For example, if we wanted to plot the streets in red,

we would simply:

Important, note that in the case of lines the parameter to control the color is simply color . This is because lines do not have

an area, so there is no need to distinguish between the main area (facecolor) and the border lines (edgecolor).

Transforming CRS

The coordindate reference system (CRS) is the way geographers and cartographers have to represent a three-dimentional

object, such as the round earth, on a two-dimensional plane, such as a piece of paper or a computer screen. If the source data

contain information on the CRS of the data, we can modify this in a GeoDataFrame . First let us check if we have the

information stored properly:

Setup figure and axis
f, ax = plt.subplots(1)
Add layer with lines, set them red and with different line width
and append it to the axis `ax`
streets.plot(linewidth=2, color='red', ax=ax)

<Axes: >

cities.crs

Skip to main content

As we can see, there is information stored about the reference system: it is using the standard Spanish projection, which is

expressed in meters. There are also other less decipherable parameters but we do not need to worry about them right now.

If we want to modify this and “reproject” the polygons into a different CRS, the quickest way is to find the EPSG code online

(epsg.io is a good one, although there are others too). For example, if we wanted to transform the dataset into lat/lon

coordinates, we would use its EPSG code, 4326:

The shape of the polygons is slightly different. Furthermore, note how the scale in which they are plotted differs.

Composing multi-layer maps

<Projected CRS: EPSG:25830>
Name: ETRS89 / UTM zone 30N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Europe between 6°W and 0°W: Faroe Islands offshore; Ireland - offshore; Jan Mayen - off
- bounds: (-6.0, 35.26, 0.01, 80.49)
Coordinate Operation:
- name: UTM zone 30N
- method: Transverse Mercator
Datum: European Terrestrial Reference System 1989 ensemble
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich

Reproject (`to_crs`) and plot (`plot`) polygons
cities.to_crs(epsg=4326).plot()
Set equal axis
lims = plt.axis('equal')

Skip to main content

https://en.wikipedia.org/wiki/International_Association_of_Oil_%26_Gas_Producers#European_Petroleum_Survey_Group
http://epsg.io/

So far we have considered many aspects of plotting a single layer of data. However, in many cases, an effective map will

require more than one: for example we might want to display streets on top of the polygons of neighborhoods, and add a few

points for specific locations we want to highlight. At the very heart of GIS is the possibility to combine spatial information

from different sources by overlaying it on top of each other, and this is fully supported in Python.

For this section, let’s select only Madrid from the streets table and convert it to lat/lon so it’s aligned with the streets and

POIs layers:

Combining different layers on a single map boils down to adding each of them to the same axis in a sequential way, as if we

were literally overlaying one on top of the previous one. For example, let’s plot the boundary of Madrid and its bars:

Saving maps to figures

mad = cities.loc[[12], :].to_crs(epsg=4326)
mad

city_id n_building geometry

12 ci012 193714 POLYGON ((-3.90016 40.30421, -3.90019 40.30457...

Setup figure and axis
f, ax = plt.subplots(1)
Add a layer with polygon on to axis `ax`
mad.plot(ax=ax, color="yellow")
Add a layer with lines on top in axis `ax`
pois.plot(ax=ax, color="green")

<Axes: >

Skip to main content

Once we have produced a map we are content with, we might want to save it to a file so we can include it into a report,

article, website, etc. Exporting maps in Python involves replacing plt.show by plt.savefig at the end of the code block

to specify where and how to save it. For example to save the previous map into a png file in the same folder where the

notebook is hosted:

If you now check on the folder, you’ll find a png (image) file with the map.

The command plt.savefig contains a large number of options and additional parameters to tweak. Given the size of the

figure created is not very large, we can increase this with the argument dpi , which stands for “dots per inch” and it’s a

standard measure of resolution in images. For example, for a high quality image, we could use 500:

Setup figure and axis
f, ax = plt.subplots(1)
Add a layer with polygon on to axis `ax`
mad.plot(ax=ax, color="yellow")
Add a layer with lines on top in axis `ax`
pois.plot(ax=ax, color="green")
Save figure to a PNG file
plt.savefig('madrid_bars.png')

Setup figure and axis
f, ax = plt.subplots(1)
Add a layer with polygon on to axis `ax`
mad.plot(ax=ax, color="yellow")
Add a layer with lines on top in axis `ax`
pois.plot(ax=ax, color="green")
Save figure to a PNG file
plt.savefig('madrid_bars.png', dpi=500)

Skip to main content

Manipulating spatial tables (GeoDataFrames)

Once we have an understanding of how to visually display spatial information contained, let us see how it can be combined

with the operations learnt in the previous session about manipulating non-spatial tabular data. Essentially, the key is to realize

that a GeoDataFrame contains most of its spatial information in a single column named geometry , but the rest of it looks

and behaves exactly like a non-spatial DataFrame (in fact, it is). This concedes them all the flexibility and convenience that

we saw in manipulating, slicing, and transforming tabular data, with the bonus that spatial data is carried away in all those

steps. In addition, GeoDataFrames also incorporate a set of explicitly spatial operations to combine and transform data. In

this section, we will consider both.

GeoDataFrame s come with a whole range of traditional GIS operations built-in. Here we will run through a small subset of

them that contains some of the most commonly used ones.

Area calculation

One of the spatial aspects we often need from polygons is their area. “How big is it?” is a question that always haunts us

when we think of countries, regions, or cities. To obtain area measurements, first make sure you GeoDataFrame is

projected. If that is the case, you can calculate areas as follows:

city_areas = cities.area
city_areas.head()

Skip to main content

This indicates that the area of the first city in our table takes up 8,450,000 squared metres. If we wanted to convert into

squared kilometres, we can divide by 1,000,000:

Length

Similarly, an equally common question with lines is their length. Also similarly, their computation is relatively

straightforward in Python, provided that our data are projected. Here we will perform the projection (to_crs) and the

calculation of the length at the same time:

Since the CRS we use (EPSG:25830) is expressed in metres, we can tell the first street segment is about 37m.

Centroid calculation

Sometimes it is useful to summarize a polygon into a single point and, for that, a good candidate is its centroid (almost like a

spatial analogue of the average). The following command will return a GeoSeries (a single column with spatial data) with

the centroids of a polygon GeoDataFrame :

0 8.449666e+06
1 9.121270e+06
2 1.322653e+07
3 6.808121e+07
4 1.072284e+07
dtype: float64

areas_in_sqkm = city_areas / 1000000
areas_in_sqkm.head()

0 8.449666
1 9.121270
2 13.226528
3 68.081212
4 10.722843
dtype: float64

street_length = streets.to_crs(epsg=25830).length
street_length.head()

0 120.776840
1 120.902920
2 396.494357
3 152.442895
4 101.392357
dtype: float64

Skip to main content

Note how cents is not an entire table but a single column, or a GeoSeries object. This means you can plot it directly, just

like a table:

But you don’t need to call a geometry column to inspect the spatial objects. In fact, if you do it will return an error because

there is not any geometry column, the object cents itself is the geometry.

Point in polygon (PiP)

Knowing whether a point is inside a polygon is conceptually a straightforward exercise but computationally a tricky task to

perform. The way to perform this operation in GeoPandas is through the contains method, available for each polygon

object.

cents = cities.centroid
cents.head()

0 POINT (386147.759 4204605.994)
1 POINT (216296.159 4579397.331)
2 POINT (688901.588 4180201.774)
3 POINT (518262.028 4069898.674)
4 POINT (206940.936 4127361.966)
dtype: geometry

cents.plot()

<Axes: >

Skip to main content

And we can perform the checks as follows:

Performing point-in-polygon in this way is instructive and useful for pedagogical reasons, but for cases with many points and

polygons, it is not particularly efficient. In these situations, it is much more advisable to perform then as a “spatial join”. If

you are interested in these, see the link provided below to learn more about them.

Buffers

Buffers are one of the classical GIS operations in which an area is drawn around a particular geometry, given a specific

radious. These are very useful, for instance, in combination with point-in-polygon operations to calculate accessibility,

catchment areas, etc.

For this example, we will use the bars table, but will project it to the same CRS as cities , so it is expressed in metres:

poly = cities.loc[12, "geometry"]
pt1 = cents[0]
pt2 = cents[112]

poly.contains(pt1)

False

poly.contains(pt2)

False

pois_projected = pois.to_crs(cities.crs)
pois_projected.crs

Skip to main content

To create a buffer using geopandas , simply call the buffer method, passing in the radious. For example, to draw a 500m.

buffer around every bar in Madrid:

And plotting it is equally straighforward:

<Projected CRS: EPSG:25830>
Name: ETRS89 / UTM zone 30N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Europe between 6°W and 0°W: Faroe Islands offshore; Ireland - offshore; Jan Mayen - off
- bounds: (-6.0, 35.26, 0.01, 80.49)
Coordinate Operation:
- name: UTM zone 30N
- method: Transverse Mercator
Datum: European Terrestrial Reference System 1989 ensemble
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich

buf = pois_projected.buffer(500)
buf.head()

0 POLYGON ((440085.759 4475244.528, 440083.352 4...
1 POLYGON ((441199.443 4482099.370, 441197.035 4...
2 POLYGON ((440012.154 4473848.877, 440009.747 4...
3 POLYGON ((441631.862 4473439.094, 441629.454 4...
4 POLYGON ((441283.067 4473680.493, 441280.659 4...
dtype: geometry

f, ax = plt.subplots(1)
Plot buffer
buf.plot(ax=ax, linewidth=0)
Plot named places on top for reference
[NOTE how we modify the dot size (`markersize`)
and the color (`color`)]
pois_projected.plot(ax=ax, markersize=1, color='yellow')

Skip to main content

Adding base layers from web sources

Many single datasets lack context when displayed on their own. A common approach to alleviate this is to use web tiles,

which are a way of quickly obtaining geographical context to present spatial data. In Python, we can use contextily to

pull down tiles and display them along with our own geographic data.

We can begin by creating a map in the same way we would do normally, and then use the add_basemap command to, er,

add a basemap:

<Axes: >

ax = cities.plot(color="black")
cx.add_basemap(ax, crs=cities.crs);

Skip to main content

https://contextily.readthedocs.io/

Note that we need to be explicit when adding the basemap to state the coordinate reference system (crs) our data is

expressed in, contextily will not be able to pick it up otherwise. Conversely, we could change our data’s CRS into

Pseudo-Mercator, the native reference system for most web tiles:

Note how the coordinates are different but, if we set it right, either approach aligns tiles and data nicely.

cities_wm = cities.to_crs(epsg=3857)
ax = cities_wm.plot(color="black")
cx.add_basemap(ax);

Skip to main content

http://epsg.io/3857

Web tiles can be integrated with other features of maps in a similar way as we have seen above. So, for example, we can

change the size of the map, and remove the axis. Let’s use Madrid for this example:

Now, contextily offers a lot of options in terms of the sources and providers you can use to create your basemaps. For

example, we can use satellite imagery instead:

f, ax = plt.subplots(1, figsize=(9, 9))
mad.plot(alpha=0.25, ax=ax)
cx.add_basemap(ax, crs=mad.crs)
ax.set_axis_off()

f, ax = plt.subplots(1, figsize=(9, 9))
mad.plot(alpha=0.25, ax=ax)
cx.add_basemap(
 ax,
 crs=mad.crs,
 source=cx.providers.Esri.WorldImagery
)
ax.set_axis_off()

Skip to main content

Have a look at this Twitter thread to get some further ideas on providers:

Skip to main content

Dani Arribas-Bel `@darribas@mapstodon.spa… · Aug 2, 2019
@darribas · Follow
Replying to @darribas

Get world imagery and make a map of a place in two lines:

Dani Arribas-Bel `@darribas@mapstodon.space`
@darribas · Follow

Terrain maps

2:30 PM · Aug 2, 2019

4 Reply Copy link

Read more on Twitter

And consider checking out the documentation website for the package:Skip to main content

https://twitter.com/darribas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas/status/1157297434579623937?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html&screen_name=darribas
https://twitter.com/darribas/status/1157297434579623937?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas/status/1157297084606930945?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas/status/1157297434579623937/photo/1?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es2_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html&screen_name=darribas
https://twitter.com/darribas/status/1157297596689539072/photo/1?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://twitter.com/darribas/status/1157297596689539072?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html&tweet_id=1157297596689539072
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html&in_reply_to=1157297596689539072
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1157297596689539072%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2Fhome%2Fjovyan%2Fwork%2Fcode%2Fgds_course%2Fwebsite%2F_build%2Fhtml%2Fcontent%2Fhome.html

Interactive maps

Everything we have seen so far relates to static maps. These are useful for publication, to include in reports or to print.

However, modern web technologies afford much more flexibility to explore spatial data interactively.

We will use the state-of-the-art Leaflet integration into geopandas . This integration connects GeoDataFrame objects with

the popular web mapping library Leaflet.js. In this context, we will only show how you can take a GeoDataFrame into an

interactive map in one line of code:

Further resources

More advanced GIS operations are possible in geopandas and, in most cases, they are extensions of the same logic we have

used in this document. If you are thinking about taking the next step from here, the following two operations (and the

documentation provided) will give you the biggest “bang for the buck”:

https://contextily.readthedocs.io/en/latest/

Display interactive map
streets.explore()

Make this Notebook Trusted to load map: File -> Trust Notebook+
−

10 km

5 mi Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

Skip to main content

https://en.wikipedia.org/wiki/Bang_for_the_buck
https://contextily.readthedocs.io/en/latest/
https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

Spatial joins

Spatial overlays

Do-It-Yourself
In this session, we will practice your skills in mapping with Python. Fire up a notebook you can edit interactively, and let’s do

this!

Data preparation

Polygons

For this section, you will have to push yourself out of the comfort zone when it comes to sourcing the data. As nice as it is to

be able to pull a dataset directly from the web at the stroke of a url address, most real-world cases are not that straight

forward. Instead, you usually have to download a dataset manually and store it locally on your computer before you can get

to work.

We are going to use data from the Consumer Data Research Centre (CDRC) about Liverpool, in particular an extract from the

Census. You can download a copy of the data at:

You will need a username and password to download the data. Create it for free at:

https://geopandas.org/mergingdata.html#spatial-joins

https://geopandas.org/set_operations.html

import geopandas, osmnx

Important

https://data.cdrc.ac.uk/user/register

Liverpool Census’11 Residential data pack download

Skip to main content

https://geopandas.org/mergingdata.html#spatial-joins
https://geopandas.org/set_operations.html
https://data.cdrc.ac.uk/user/register
https://data.cdrc.ac.uk/system/files/Census_Residential_Data_Pack_2011/Census_Residential_Data_Pack_2011_E08000012.zip

Once you have the .zip file on your computer, right-click and “Extract all”. The resulting folder will contain all you need.

For the sake of the example, let’s assume you place the resulting folder in the same location as the notebook you are using. If

that is the case, you can load up a GeoDataFrame of Liverpool neighborhoods with:

Lines

For a line layer, we are going to use a different bit of osmnx functionality that will allow us to extract all the highways:

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

Points

For points, we will use an analogue of the POI layer we have used in the Lab: pubs in Liverpool, as recorded by

OpenStreetMap. We can make a similar query to retrieve the table:

import geopandas
liv = geopandas.read_file("Census_Residential_Data_Pack_2011_E08000012/data/Census_Residential_

bikepaths = osmnx.graph_from_place("Liverpool, UK", network_type="bike")

bikepaths = osmnx.load_graphml("../data/web_cache/bikepaths_liverpool.graphml")

len(bikepaths)

23481

pubs = osmnx.geometries_from_place(
 "Liverpool, UK", tags={"amenity": "bar"}
)

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/lab_C

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

Tasks

Task I: Tweak your map

With those three layers, try to complete the following tasks:

Make a map of the Liverpool neighborhoods that includes the following characteristics:

Features a title

Does not include axes frame

It has a figure size of 10 by 11

Polygons are all in color "#525252" and 50% transparent

Boundary lines (“edges”) have a width of 0.3 and are of color "#B9EBE3"

Includes a basemap with the Stamen watercolor theme

If you are using an old version of osmnx (<1.0), replace the code in the cell above for:

You can check the version you are using with the following snipet:

Attention

pubs = osmnx.pois.pois_from_place(
 "Liverpool, UK", tags={"amenity": "bar"}
)

osmnx.__version__

pubs = geopandas.read_parquet("../data/web_cache/pois_bars_liverpool.parquet")

/opt/conda/lib/python3.8/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_
 and should_run_async(code)

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure
https://contextily.readthedocs.io/en/latest/providers_deepdive.html#Overview-of-built-in-providers

Not all of the requirements above are not equally hard to achieve. If you can get some but not all of them, that’s also

great! The point is you learn something every time you try.

Task II: Non-spatial manipulations

For this one we will combine some of the ideas we learnt in the previous block with this one.

Focus on the LSOA liv layer and use it to do the following:

1. Calculate the area of each neighbourhood

2. Find the five smallest areas in the table. Create a new object (e.g. smallest with them only)

3. Create a multi-layer map of Liverpool where the five smallest areas are coloured in red, and the rest appear in black.

Task III: The gender gap on the streets

This one is a bit more advanced, so don’t despair if you can’t get it on your first try. It also relies on the streets dataset from

the “Hands-on” section, so you will need to load it up on your own. Here’re the questions for you to answer:

The suggestion is that you get to work right away. However, if this task seems too daunting, you can expand the tip below for

a bit of help.

Note

Which group accounts for longer total street length in Zaragoza: men or women? By how much?

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bB/lab_B
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-c-streets

The slides used in the clip are available at:

[HTML]

[PDF]

Concepts
This block is all about Geovisualisation and displaying statistical information on maps. We start with an introduction on what

geovisualisation is; then we follow with the modifiable areal unit problem, a key concept to keep in mind when displaying

statistical information spatially; and we wrap up with tips to make awesome choropleths, thematic maps. Each section

contains a short clip and a set of slides, plus a few (optional) readings.

Geovisualisation

Geovisualisation is an area that underpins much what we will discuss in this course. Often, we will be presenting the results

of more sophisticated analyses as maps. So getting the principles behind mapping right is critical. In this clip, we cover what

is (geo)visualisation and why it is important.

0:00 / 0:00

Answering those two questions involves the following steps:

1. You will need your spatial data projected, so they are expressed in metres, and the length calculation makes

sense. Check out the section on transforming the CRS, and use, for example EPSG:25830 as the target CRS.

2. Separate streets named after men from those named after women, perhaps in two objects (men , women) that

contain the streets for each group. This is a non-spatial query at its heart, so make sure to revisit that section on

the previous block.

3. Calculate the length of each street in each group. Refresh your memory of this in this section.

4. Create a total length by group by adding the lengths of each street. This is again a non-spatial operation (sum), so

make sure to re-read this part of Block B.

5. Compare the two and answer the questions.

Surprised by the solution? Perhaps not, but remember data analysis is not only about discovering the unexpected, but

about providing evidence of the things we “know” so we can build better arguments about actions.

Tip

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_D_i.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_D_i.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-c-to-crs
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-b-condition-queries
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-c-length
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-b-new-columns

The slides used in the clip are available at:

[HTML]

[PDF]

The slides used in the clip are available at:

[HTML]

[PDF]

Geographical containers for data

This section tries to get you to think about the geographical containers we use to represent data in maps. By that, we mean the

areas, delineations and aggregations we, implicitly or explicitly, incur in when mapping data. This is an important aspect, but

Geographers have been aware of them for a long time, so we are standing on the shoulders of giants.

Choropleths

Choropleths are thematic maps and, these days, are everywhere. From elections, to economic inequality, to the distribution of

population density, there’s a choropleth for everyone. Although technically, it is easy to create choropleths, it is even easier to

make bad choropleths. Fortunately, there are a few principles that we can follow to create effective choropleths. Get them all

delivered right to the conform of your happy place in the following clip and slides!

Further readings

The clip above contains a compressed version of the key principles behind successful choropleths. For a more comprehensive

coverage, please refer to:

Choropleths chapter on the GDS book (in progress) reyABwolf.

0:00 / 0:00

0:00 / 0:00

Slides

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_D_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_D_ii.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_D_iii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_D_iii.pdf

Cynthia Brewer’s “Designing Better Maps” brewer2015designing covers several core aspects of building effective

geovisualisations.

Hands-on

Choropleths in Python

This is an adapted version, with a bit less content and detail, of the chapter on choropleth mapping by Rey, Arribas-

Bel and Wolf (in progress) reyABwolf. Check out the full chapter, available for free at:

In this session, we will build on all we have learnt so far about loading and manipulating (spatial) data and apply it to one of

the most commonly used forms of spatial analysis: choropleths. Remember these are maps that display the spatial distribution

of a variable encoded in a color scheme, also called palette. Although there are many ways in which you can convert the

values of a variable into a specific color, we will focus in this context only on a handful of them, in particular:

Unique values

Equal interval

Quantiles

Fisher-Jenks

Before all this mapping fun, let us get the importing of libraries and data loading out of the way:

Data

To mirror the original chapter this section is based on, we will use the same dataset: the Mexico GDP per capita dataset,

which we can access as a PySAL example dataset.

Important

https://geographicdata.science/book/notebooks/05_choropleth.html

%matplotlib inline

import geopandas
from pysal.lib import examples
import seaborn as sns
import pandas as pd
from pysal.viz import mapclassify
import numpy as np
import matplotlib.pyplot as plt

Skip to main content

https://geographicdata.science/book/notebooks/05_choropleth.html
https://geographicdata.science/book/data/mexico/README.html
https://geographicdata.science/book/notebooks/05_choropleth.html

You can read more about PySAL example datasets here

We can get a short explanation of the dataset through the explain method:

Now, to download it from its remote location, we can use load_example :

This will download the data and place it on your home directory. We can inspect the directory where it is stored:

For this section, we will read the ESRI shapefile, which we can do by pointing geopandas.read_file to the .shp file.

The utility function get_path makes it a bit easier for us:

And, from now on, db is a table as we are used to so far in this course:

Note

examples.explain("mexico")

mexico
======

Decennial per capita incomes of Mexican states 1940-2000
--

* mexico.csv: attribute data. (n=32, k=13)
* mexico.gal: spatial weights in GAL format.
* mexicojoin.shp: Polygon shapefile. (n=32)

Data used in Rey, S.J. and M.L. Sastre Gutierrez. (2010) "Interregional inequality dynamics in

mx = examples.load_example("mexico")

mx.get_file_list()

['/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/mexicojoin.shx',
 '/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/README.md',
 '/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/mexico.gal',
 '/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/mexico.csv',
 '/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/mexicojoin.shp',
 '/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/mexicojoin.prj',
 '/opt/conda/lib/python3.8/site-packages/libpysal/examples/mexico/mexicojoin.dbf']

db = geopandas.read_file(examples.get_path("mexicojoin.shp"))

Skip to main content

https://pysal.org/libpysal/notebooks/examples.html

The data however does not include a CRS:

To be able to add baselayers, we need to specify one. Looking at the details and the original reference, we find the data are

expressed in longitude and latitude, so the CRS we can use is EPSG:4326 . Let’s add it to db :

db.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 32 entries, 0 to 31
Data columns (total 35 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 POLY_ID 32 non-null int64
 1 AREA 32 non-null float64
 2 CODE 32 non-null object
 3 NAME 32 non-null object
 4 PERIMETER 32 non-null float64
 5 ACRES 32 non-null float64
 6 HECTARES 32 non-null float64
 7 PCGDP1940 32 non-null float64
 8 PCGDP1950 32 non-null float64
 9 PCGDP1960 32 non-null float64
 10 PCGDP1970 32 non-null float64
 11 PCGDP1980 32 non-null float64
 12 PCGDP1990 32 non-null float64
 13 PCGDP2000 32 non-null float64
 14 HANSON03 32 non-null float64
 15 HANSON98 32 non-null float64
 16 ESQUIVEL99 32 non-null float64
 17 INEGI 32 non-null float64
 18 INEGI2 32 non-null float64
 19 MAXP 32 non-null float64
 20 GR4000 32 non-null float64
 21 GR5000 32 non-null float64
 22 GR6000 32 non-null float64
 23 GR7000 32 non-null float64
 24 GR8000 32 non-null float64
 25 GR9000 32 non-null float64
 26 LPCGDP40 32 non-null float64
 27 LPCGDP50 32 non-null float64
 28 LPCGDP60 32 non-null float64
 29 LPCGDP70 32 non-null float64
 30 LPCGDP80 32 non-null float64
 31 LPCGDP90 32 non-null float64
 32 LPCGDP00 32 non-null float64
 33 TEST 32 non-null float64
 34 geometry 32 non-null geometry
dtypes: float64(31), geometry(1), int64(1), object(2)
memory usage: 8.9+ KB

db.crs

Skip to main content

Now we are fully ready to map!

Choropleths

Unique values

A choropleth for categorical variables simply assigns a different color to every potential value in the series. The main

requirement in this case is then for the color scheme to reflect the fact that different values are not ordered or follow a

particular scale.

In Python, creating categorical choropleths is possible with one line of code. To demonstrate this, we can plot the Mexican

states and the region each belongs to based on the Mexican Statistics Institute (coded in our table as the INEGI variable):

db.crs = "EPSG:4326"
db.crs

<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

db.plot(
 column="INEGI",
 categorical=True,
 legend=True
)

<AxesSubplot:>

Skip to main content

Let us stop for a second in a few crucial aspects:

Note how we are using the same approach as for basic maps, the command plot , but we now need to add the argument

column to specify which column in particular is to be represented.

Since the variable is categorical we need to make that explicit by setting the argument categorical to True .

As an optional argument, we can set legend to True and the resulting figure will include a legend with the names of

all the values in the map.

Unless we specify a different colormap, the selected one respects the categorical nature of the data by not implying a

gradient or scale but a qualitative structure.

Equal interval

If, instead of categorical variables, we want to display the geographical distribution of a continuous phenomenon, we need to

select a way to encode each value into a color. One potential solution is applying what is usually called “equal intervals”. The

intuition of this method is to split the range of the distribution, the difference between the minimum and maximum value,

into equally large segments and to assign a different color to each of them according to a palette that reflects the fact that

values are ordered.

Creating the choropleth is relatively straightforward in Python. For example, to create an equal interval on the GDP per

capita in 2000 (PCGDP2000), we can run a similar command as above:

Pay attention to the key differences:

db.plot(
 column="PCGDP2000",
 scheme="equal_interval",
 k=7,
 cmap="YlGn",
 legend=True
)

<AxesSubplot:>

Skip to main content

Instead of specifyig categorical as True , we replace it by the argument scheme , which we will use for all

choropleths that require a continuous classification scheme. In this case, we set it to equal_interval .

As above, we set the number of colors to 7. Note that we need not pass the bins we calculated above, the plotting method

does it itself under the hood for us.

As optional arguments, we can change the colormap to a yellow to green gradient, which is one of the recommended ones

by ColorBrewer for a sequential palette.

Now, let’s dig a bit deeper into the classification, and how exactly we are encoding values into colors. Each segment, also

called bins or buckets, can also be calculated using the library mapclassify from the PySAL family:

The only additional argument to pass to Equal_Interval , other than the actual variable we would like to classify is the

number of segments we want to create, k , which we are arbitrarily setting to seven in this case. This will be the number of

colors that will be plotted on the map so, although having several can give more detail, at some point the marginal value of an

additional one is fairly limited, given the ability of the brain to tell any differences.

Once we have classified the variable, we can check the actual break points where values stop being in one class and become

part of the next one:

The array of breaking points above implies that any value in the variable below 15,207.57 will get the first color in the

gradient when mapped, values between 15,207.57 and 21,731.14 the next one, and so on.

The key characteristic in equal interval maps is that the bins are allocated based on the magnitude on the values, irrespective

of how many obervations fall into each bin as a result of it. In highly skewed distributions, this can result in bins with a large

classi = mapclassify.EqualInterval(db["PCGDP2000"], k=7)
classi

EqualInterval

 Interval Count

[8684.00, 15207.57] | 10
(15207.57, 21731.14] | 10
(21731.14, 28254.71] | 5
(28254.71, 34778.29] | 4
(34778.29, 41301.86] | 2
(41301.86, 47825.43] | 0
(47825.43, 54349.00] | 1

classi.bins

array([15207.57142857, 21731.14285714, 28254.71428571, 34778.28571429,
 41301.85714286, 47825.42857143, 54349.])

Skip to main content

http://colorbrewer2.org/

number of observations, while others only have a handful of outliers. This can be seen in the summary table printed out

above, where ten states are in the first group, but only one of them belong to the one with highest values. This can also be

represented visually with a kernel density plot where the break points are included as well:

 Show code cell source

Technically speaking, the figure is created by overlaying a KDE plot with vertical bars for each of the break points. This

makes much more explicit the issue highlighed by which the first bin contains a large amount of observations while the one

with top values only encompasses a handful of them.

Quantiles

One solution to obtain a more balanced classification scheme is using quantiles. This, by definition, assigns the same amount

of values to each bin: the entire series is laid out in order and break points are assigned in a way that leaves exactly the same

amount of observations between each of them. This “observation-based” approach contrasts with the “value-based” method

of equal intervals and, although it can obscure the magnitude of extreme values, it can be more informative in cases with

skewed distributions.

The code required to create the choropleth mirrors that needed above for equal intervals:

db.plot(
 column="PCGDP2000",
 scheme="quantiles",
 k=7,
 cmap="YlGn",
 legend=True
)

Skip to main content

Note how, in this case, the amount of polygons in each color is by definition much more balanced (almost equal in fact,

except for rounding differences). This obscures outlier values, which get blurred by significantly smaller values in the same

group, but allows to get more detail in the “most populated” part of the distribution, where instead of only white polygons,

we can now discern more variability.

To get further insight into the quantile classification, let’s calculate it with mapclassify :

And, similarly, the bins can also be inspected:

The visualization of the distribution can be generated in a similar way as well:

 Show code cell source

<AxesSubplot:>

classi = mapclassify.Quantiles(db["PCGDP2000"], k=7)
classi

Quantiles

 Interval Count

[8684.00, 11752.00] | 5
(11752.00, 13215.43] | 4
(13215.43, 15996.29] | 5
(15996.29, 20447.14] | 4
(20447.14, 26109.57] | 5
(26109.57, 30357.86] | 4
(30357.86, 54349.00] | 5

classi.bins

array([11752. , 13215.42857143, 15996.28571429, 20447.14285714,
 26109.57142857, 30357.85714286, 54349.])

Skip to main content

Fisher-Jenks

Equal interval and quantiles are only two examples of very many classification schemes to encode values into colors.

Although not all of them are integrated into geopandas , PySAL includes several other classification schemes (for a

detailed list, have a look at this link). As an example of a more sophisticated one, let us create a Fisher-Jenks choropleth:

The same classification can be obtained with a similar approach as before:

db.plot(
 column="PCGDP2000",
 scheme="fisher_jenks",
 k=7,
 cmap="YlGn",
 legend=True
)

<AxesSubplot:>

classi = mapclassify.FisherJenks(db["PCGDP2000"], k=7)
classi

Skip to main content

https://pysal.org/mapclassify/notebooks/01_maximum_breaks.html

This methodology aims at minimizing the variance within each bin while maximizing that between different classes.

Graphically, we can see how the break points are not equally spaced but are adapting to obtain an optimal grouping of

observations:

 Show code cell source

For example, the bin with highest values covers a much wider span that the one with lowest, because there are fewer states in

that value range.

Zooming into the map

Zoom into full map

A general map of an entire region, or urban area, can sometimes obscure local patterns because they happen at a much

smaller scale that cannot be perceived in the global view. One way to solve this is by providing a focus of a smaller part of

FisherJenks

 Interval Count

[8684.00, 13360.00] | 10
(13360.00, 18170.00] | 8
(18170.00, 24068.00] | 4
(24068.00, 28460.00] | 4
(28460.00, 33442.00] | 3
(33442.00, 38672.00] | 2
(38672.00, 54349.00] | 1

classi.bins

array([13360., 18170., 24068., 28460., 33442., 38672., 54349.])

Skip to main content

the map in a separate figure. Although there are many ways to do this in Python, the most straightforward one is to reset the

limits of the axes to center them in the area of interest.

As an example, let us consider the quantile map produced above:

If we want to focus around the capital, Mexico DF, the first step involves realising that such area of the map (the little dark

green polygon in the SE centre of the map), falls within the coordinates of -102W/-97W, and 18N/21N, roughly speaking. To

display a zoom map into that area, we can do as follows:

db.plot(
 column="PCGDP2000",
 scheme="quantiles",
 k=7,
 cmap="YlGn",
 legend=False
)

<AxesSubplot:>

Setup the figure
f, ax = plt.subplots(1)
Draw the choropleth
db.plot(
 column="PCGDP2000",
 scheme="quantiles",
 k=7,
 cmap="YlGn",
 legend=False,
 ax=ax
)
Redimensionate X and Y axes to desired bounds
ax.set_ylim(18, 21)
ax.set_xlim(-102, -97)

Skip to main content

Partial map

The approach above is straightforward, but not necessarily the most efficient one: not that, to generate a map of a potentially

very small area, we effectively draw the entire (potentially very large) map, and discard everything except the section we

want. This is not straightforward to notice at first sight, but what Python is doing in the code cell above is plottin the entire

db object, and only then focusing the figure on the X and Y ranges specified in set_xlim / set_ylim .

Sometimes, this is required. For example, if we want to retain the same coloring used for the national map, but focus on the

region around Mexico DF, this approach is the easiest one.

However, sometimes, we only need to plot the geographical features within a given range, and we either don’t need to keep

the national coloring (e.g. we are using a single color), or we want a classification performed only with the features in the

region.

For these cases, it is computationally more efficient to select the data we want to plot first, and then display them through

plot . For this, we can rely on the cx operator:

(-102.0, -97.0)

subset = db.cx[-102:-97, 18:21]
subset.plot()

<AxesSubplot:>

Skip to main content

We query the range of spatial coordinates similarly to how we query indices with loc . Note however the result includes full

geographic features, and hence the polygons with at least some area within the range are included fully. This results in a

larger range than originally specified.

This approach is a “spatial slice”. If you remember when we saw non-spatial slices (enabled by the loc operator), this is a

similar approach but our selection criteria, instead of subsetting by indices of the table, are based on the spatial coordinates of

the data represented in the table.

Since the result is a GeoDataFrame itself, we can create a choropleth that is based only on the data in the subset:

Do-It-Yourself
Let’s make a bunch of choropleths! In this section, you will practice the concepts and code we have learnt in this block.

Happy hacking!

Data preparation

The AHAH dataset was invented by a University of Liverpool team. If you want to find out more about the

background and details of the project, have a look at the information page at the CDRC website.

subset.plot(
 column="PCGDP2000",
 scheme="quantiles",
 k=7,
 cmap="YlGn",
 legend=False
)

<AxesSubplot:>

Note

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-b-slices
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/concepts_D
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/lab_D
https://data.cdrc.ac.uk/dataset/access-healthy-assets-hazards-ahah

We are going to use the Access to Healthy Assets and Hazards (AHAH) index. This is a score that ranks LSOAs (the same

polygons we used in block C) by the proximity to features of the environment that are considered positive for health (assets)

and negative (hazards). The resulting number gives us a sense of how “unhealthy” the environment of the LSOA is. The

higher the score, the less healthy the area is assessed to be.

To download the Liverpool AHAH pack, please go over to:

You will need a username and password to download the data. Create it for free at:

Once you have the .zip file on your computer, right-click and “Extract all”. The resulting folder will contain all you need.

For the sake of the example, let’s assume you place the resulting folder in the same location as the notebook you are using. If

that is the case, you can load up a GeoDataFrame of Liverpool neighborhoods with:

Now, this gets us the geometries of the LSOAs, but not the AHAH data. For that, we need to read in the data and join it to

ahah . Assuming the same location of the data as above, we can do as follows:

To read the data, and as follows to join it:

Now we’re ready to map using the ahah object.

Tasks

Task I: AHAH choropleths

Important

https://data.cdrc.ac.uk/user/register

Liverpool AHAH GeoData pack

import geopandas
lsoas = geopandas.read_file("Access_to_Healthy_Assets_and_Hazards_AHAH_E08000012/data/Access_to

import pandas
ahah_data = pandas.read_csv("Access_to_Healthy_Assets_and_Hazards_AHAH_E08000012/data/Access_to

ahah = lsoas.join(ahah_data.set_index("lsoa11cd"), on="lsoa11cd")

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bC/diy_C
https://data.cdrc.ac.uk/user/register
https://data.cdrc.ac.uk/system/files/Access_to_Healthy_Assets_and_Hazards_AHAH/Access_to_Healthy_Assets_and_Hazards_AHAH_E08000012.zip

The slides used in the clip are available at:

[HTML]

Create the following choropleths and, where possible, complement them with a figure that displays the distribution of values

using a KDE:

Equal Interval with five classes

Quantiles with five classes

Fisher-Jenks with five classes

Unique Values with the following setup:

Split the LSOAs in two classes: above and below the average AHAH score

Assign a qualitative label (above or below) to each LSOA

Create a unique value map for the labels you have just created

Task II: Zoom maps

Generate the following maps:

Zoom of the city centre of Liverpool with he same color for every LSOA

Quantile map of AHAH for all of Liverpool, zoomed into north of the city centre

Zoom to north of the city centre with a quantile map of AHAH for the section only

Concepts
This block is about how we pull off the trick to turn geography into numbers statistics can understand. At this point, we dive

right into the more methodological part of the course; so you can expect a bit of a ramp up in the conceptual sections. Take a

deep breath and jump in, it’s well worth the effort! At the same time, the coding side of each block will start looking more

and more familiar because we are starting to repeat concepts and we will introduce less new building blocks and instead rely

more and more on what we have seen, just adding small bits here and there.

Space, formally

How do you express geographical relations between objects (e.g. areas, points) in a way that can be used in statistical

analysis? This is exactly the core of what we get into in here. There are several ways, of course, but one of the most

widespread approaches is what is termed spatial weights matrices. We motivate their role and define them in the following

clip.

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_E_i.html
https://osm.org/go/euf9EJpQ-?m=
https://osm.org/go/euf9TZJ?m=
https://osm.org/go/euf9TZJ?m=

[PDF]

Once you have watched the clip above, here’s a quiz for you!

Imagine a geography of squared regions (ie. a grid) with the following structure:

Each region is assigned an ID; so the most north-west region is 1, while the most south-east is 9. Here’s a question:

0:00 / 0:00

What is the dimension of the Spatial Weights Matrix for the region above?

It is one of the following:

1.

2.

3.

4.

Tip

3 × 3

9 × 3

3 × 9

9 × 9

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_E_i.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/_images/l05_geo.png

The slides used in the clip are available at:

[HTML]

[PDF]

Types of Weights

Once we know what spatial weights are generally, in this clip we dive into some of the specific types we can build for our

analyses.

Here is a second question for you once you have watched the clip above:

0:00 / 0:00

It is nine rows by nine columns. To see why, remember that spatial weights matrices are , as they need to

record the spatial relationship between every single observation (regions in the example above), with every other

single observation on the dataset.

Solution

N × N

Slides

What does the rook contiguity spatial weights matrix look like for the region abvoe? Can you write it down by hand?

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_E_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_E_ii.pdf

The slides used in the clip are available at:

[HTML]

[PDF]

The Spatial Lag

We wrap up the the set of concepts in this block with one of the applications that makes spatial weights matrices so

important: the spatial lag. Watch the clip to find out what it is and then jump over the next part to see how all of these ideas

translate into delicious, juicy Python code!

More materials

If you want a similar but slightly different take on spatial weights by Luc Anselin, one of the biggest minds in the field of

spatial analysis, I strongly recommend you watch the following two clips, part of the course offered by the Spatial Data

Center at the University of Chicago:

Lecture on “Spatial Weights”

0:00 / 0:00

Here it is:

Solution

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_E_iii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_E_iii.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bE/lab_E
file:///home/jovyan/work/code/gds_course/website/_build/html/_images/l05_geo_w.png

p g

 Show code cell outputs

Lecture on “Spatial Lag”, you can ignore the last five minutes as they are a bit more advanced

 Show code cell outputs

Further readings

If you liked what you saw in this section and would like to digg deeper into spatial weights, the following readings are good

next steps:

Spatial weights chapter on the GDS book (in progress) reyABwolf.

For a more advanced and detailed treatment, the chapters on spatial weights in the Anselin & Rey book

anselin2014modern are the best source.

Hands-on

Spatial weights

In this session we will be learning the ins and outs of one of the key pieces in spatial analysis: spatial weights matrices. These

are structured sets of numbers that formalize geographical relationships between the observations in a dataset. Essentially, a

spatial weights matrix of a given geography is a positive definite matrix of dimensions by , where is the total number

of observations:

where each cell contains a value that represents the degree of spatial contact or interaction between observations and .

A fundamental concept in this context is that of neighbor and neighborhood. By convention, elements in the diagonal ()

are set to zero. A neighbor of a given observation is another observation with which has some degree of connection. In

terms of , and are thus neighbors if . Following this logic, the neighborhood of will be the set of observations

in the system with which it has certain connection, or those observations with a weight greater than zero.

There are several ways to create such matrices, and many more to transform them so they contain an accurate representation

that aligns with the way we understand spatial interactions between the elements of a system. In this session, we will

introduce the most commonly used ones and will show how to compute them with PySAL .

N N N

W =

⎛⎜⎝ 0 w12 … w1N

w21 ⋱ wij ⋮

⋮ wji 0 ⋮

wN1 … … 0

⎞⎟⎠wij i j

wii

i i

W i j wij > 0 i

Skip to main content

Data

For this tutorial, we will use a dataset of Liverpool small areas (or Lower layer Super Output Areas, LSOAs) for Liverpool.

The table is available as part of this course, so can be accessed remotely through the web. If you want to see how the table

was created, a notebook is available here.

To make things easier, we will read data from a file posted online so, for now, you do not need to download any dataset:

%matplotlib inline

import seaborn as sns
import pandas as pd
from pysal.lib import weights
from libpysal.io import open as psopen
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt

Read the file in
db = gpd.read_file(
 "https://darribas.org/gds_course/content/data/liv_lsoas.gpkg"
)
Index table on the LSOA ID
db = db.set_index("LSOA11CD", drop=False)
Display summary
db.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 LSOA11CD 298 non-null object
 1 MSOA11CD 298 non-null object
 2 geometry 298 non-null geometry
dtypes: geometry(1), object(2)
memory usage: 9.3+ KB

/opt/conda/lib/python3.8/site-packages/geopandas/geodataframe.py:577: RuntimeWarning: Sequentia
 for feature in features_lst:

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/data/liv_lsoas_prep

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Building spatial weights in PySAL

Contiguity

Contiguity weights matrices define spatial connections through the existence of common boundaries. This makes it directly

suitable to use with polygons: if two polygons share boundaries to some degree, they will be labeled as neighbors under these

kinds of weights. Exactly how much they need to share is what differenciates the two approaches we will learn: queen and

rook.

Queen

Under the queen criteria, two observations only need to share a vortex (a single point) of their boundaries to be considered

neighbors. Constructing a weights matrix under these principles can be done by running:

The command above creates an object w_queen of the class W . This is the format in which spatial weights matrices are

stored in PySAL . By default, the weights builder (Queen.from_dataframe) will use the index of the table, which is useful

so we can keep everything in line easily.

A W object can be queried to find out about the contiguity relations it contains. For example, if we would like to know who

is a neighbor of observation E01006690 :

Alternative

db = gpd.read_file("liv_lsoas.gpkg")

w_queen = weights.Queen.from_dataframe(db, idVariable="LSOA11CD")
w_queen

<libpysal.weights.contiguity.Queen at 0x7fba3879f910>

w_queen['E01006690']

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/data/liv_lsoas.gpkg

This returns a Python dictionary that contains the ID codes of each neighbor as keys, and the weights they are assigned as

values. Since we are looking at a raw queen contiguity matrix, every neighbor gets a weight of one. If we want to access the

weight of a specific neighbor, E01006691 for example, we can do recursive querying:

W objects also have a direct way to provide a list of all the neighbors or their weights for a given observation. This is thanks

to the neighbors and weights attributes:

Once created, W objects can provide much information about the matrix, beyond the basic attributes one would expect. We

have direct access to the number of neighbors each observation has via the attribute cardinalities . For example, to find

out how many neighbors observation E01006524 has:

{'E01006697': 1.0,
 'E01006692': 1.0,
 'E01033763': 1.0,
 'E01006759': 1.0,
 'E01006695': 1.0,
 'E01006720': 1.0,
 'E01006691': 1.0}

w_queen['E01006690']['E01006691']

1.0

w_queen.neighbors['E01006690']

['E01006697',
 'E01006692',
 'E01033763',
 'E01006759',
 'E01006695',
 'E01006720',
 'E01006691']

w_queen.weights['E01006690']

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

w_queen.cardinalities['E01006524']

6

Skip to main content

Since cardinalities is a dictionary, it is direct to convert it into a Series object:

This allows, for example, to access quick plotting, which comes in very handy to get an overview of the size of

neighborhoods in general:

The figure above shows how most observations have around five neighbors, but there is some variation around it. The

distribution also seems to follow a symmetric form, where deviations from the average occur both in higher and lower values

almost evenly.

Some additional information about the spatial relationships contained in the matrix are also easily available from a W object.

Let us tour over some of them:

queen_card = pd.Series(w_queen.cardinalities)
queen_card.head()

E01006512 6
E01006513 9
E01006514 5
E01006515 8
E01006518 5
dtype: int64

sns.distplot(queen_card, bins=10)

/opt/conda/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot
 warnings.warn(msg, FutureWarning)

<AxesSubplot:ylabel='Density'>

Number of observations
w_queen.n

298 Skip to main content

Spatial weight matrices can be explored visually in other ways. For example, we can pick an observation and visualize it in

the context of its neighborhood. The following plot does exactly that by zooming into the surroundings of LSOA

E01006690 and displaying its polygon as well as those of its neighbors:

Average number of neighbors
w_queen.mean_neighbors

5.617449664429531

Min number of neighbors
w_queen.min_neighbors

1

Max number of neighbors
w_queen.max_neighbors

11

Islands (observations disconnected)
w_queen.islands

[]

Order of IDs (first five only in this case)
w_queen.id_order[:5]

['E01006512', 'E01006513', 'E01006514', 'E01006515', 'E01006518']

Skip to main content

Note how the figure is built gradually, from the base map (L. 4-5), to the focal point (L. 9), to its neighborhood (L. 11-13).

Once the entire figure is plotted, we zoom into the area of interest (L. 19-20).

Rook

Rook contiguity is similar to and, in many ways, superseded by queen contiguity. However, since it sometimes comes up in

the literature, it is useful to know about it. The main idea is the same: two observations are neighbors if they share some of

their boundary lines. However, in the rook case, it is not enough with sharing only one point, it needs to be at least a segment

of their boundary. In most applied cases, these differences usually boil down to how the geocoding was done, but in some

cases, such as when we use raster data or grids, this approach can differ more substantively and it thus makes more sense.

From a technical point of view, constructing a rook matrix is very similar:

Setup figure
f, ax = plt.subplots(1, figsize=(6, 6))
Plot base layer of polygons
db.plot(ax=ax, facecolor='k', linewidth=0.1)
Select focal polygon
NOTE we pass both the area code and the column name
(`geometry`) within brackets!!!
focus = db.loc[['E01006690'], ['geometry']]
Plot focal polygon
focus.plot(facecolor='red', alpha=1, linewidth=0, ax=ax)
Plot neighbors
neis = db.loc[w_queen['E01006690'], :]
neis.plot(ax=ax, facecolor='lime', linewidth=0)
Title
f.suptitle("Queen neighbors of `E01006690`")
Style and display on screen
ax.set_ylim(388000, 393500)
ax.set_xlim(336000, 339500)
plt.show()

Skip to main content

The output is of the same type as before, a W object that can be queried and used in very much the same way as any other

one.

Distance

Distance based matrices assign the weight to each pair of observations as a function of how far from each other they are.

How this is translated into an actual weight varies across types and variants, but they all share that the ultimate reason why

two observations are assigned some weight is due to the distance between them.

K-Nearest Neighbors

One approach to define weights is to take the distances between a given observation and the rest of the set, rank them, and

consider as neighbors the closest ones. That is exactly what the -nearest neighbors (KNN) criterium does.

To calculate KNN weights, we can use a similar function as before and derive them from a shapefile:

Note how we need to specify the number of nearest neighbors we want to consider with the argument k . Since it is a

polygon shapefile that we are passing, the function will automatically compute the centroids to derive distances between

observations. Alternatively, we can provide the points in the form of an array, skipping this way the dependency of a file on

disk:

w_rook = weights.Rook.from_dataframe(db)
w_rook

<libpysal.weights.contiguity.Rook at 0x7fba38676df0>

k k

knn5 = weights.KNN.from_dataframe(db, k=5)
knn5

<libpysal.weights.distance.KNN at 0x7fba34e3dfd0>

Extract centroids
cents = db.centroid
Extract coordinates into an array
pts = pd.DataFrame(
 {"X": cents.x, "Y": cents.y}
).values
Compute KNN weights
knn5_from_pts = weights.KNN.from_array(pts, k=5)
knn5_from_pts

<libpysal.weights.distance.KNN at 0x7fba386707f0> Skip to main content

Distance band

Another approach to build distance-based spatial weights matrices is to draw a circle of certain radious and consider neighbor

every observation that falls within the circle. The technique has two main variations: binary and continuous. In the former

one, every neighbor is given a weight of one, while in the second one, the weights can be further tweaked by the distance to

the observation of interest.

To compute binary distance matrices in PySAL , we can use the following command:

This creates a binary matrix that considers neighbors of an observation every polygon whose centroid is closer than 1,000

metres (1Km) of the centroid of such observation. Check, for example, the neighborhood of polygon E01006690 :

Note that the units in which you specify the distance directly depend on the CRS in which the spatial data are projected, and

this has nothing to do with the weights building but it can affect it significantly. Recall how you can check the CRS of a

GeoDataFrame :

w_dist1kmB = weights.DistanceBand.from_dataframe(db, 1000)

/opt/conda/lib/python3.8/site-packages/libpysal/weights/weights.py:172: UserWarning: The weight
 There are 2 disconnected components.
 warnings.warn(message)

w_dist1kmB['E01006690']

{'E01006691': 1.0,
 'E01006692': 1.0,
 'E01006695': 1.0,
 'E01006697': 1.0,
 'E01006720': 1.0,
 'E01006725': 1.0,
 'E01006726': 1.0,
 'E01033763': 1.0}

db.crs

Skip to main content

In this case, you can see the unit is expressed in metres (m), hence we set the threshold to 1,000 for a circle of 1km of

radious.

An extension of the weights above is to introduce further detail by assigning different weights to different neighbors within

the radious circle based on how far they are from the observation of interest. For example, we could think of assigning the

inverse of the distance between observations and as . This can be computed with the following command:

In w_dist1kmC , every observation within the 1km circle is assigned a weight equal to the inverse distance between the two:

This way, the further apart and are from each other, the smaller the weight will be.

Contrast the binary neighborhood with the continuous one for E01006690 :

<Projected CRS: PROJCS["Transverse_Mercator",GEOGCS["GCS_OSGB 1936 ...>
Name: Transverse_Mercator
Axis Info [cartesian]:
- [east]: Easting (metre)
- [north]: Northing (metre)
Area of Use:
- undefined
Coordinate Operation:
- name: unnamed
- method: Transverse Mercator
Datum: OSGB 1936
- Ellipsoid: Airy 1830
- Prime Meridian: Greenwich

i j wij

w_dist1kmC = weights.DistanceBand.from_dataframe(db, 1000, binary=False)

/opt/conda/lib/python3.8/site-packages/scipy/sparse/data.py:117: RuntimeWarning: divide by zero
 return self._with_data(data ** n)

wij =
1

dij

i j wij

w_dist1kmC['E01006690']

{'E01006691': 0.001320115452290246,
 'E01006692': 0.0016898106255168294,
 'E01006695': 0.001120923796462639,
 'E01006697': 0.001403469553911711,
 'E01006720': 0.0013390451319917913,
 'E01006725': 0.001009044334260805,
 'E01006726': 0.0010528395831202145,
 'E01033763': 0.0012983249272553688}

Skip to main content

Following this logic of more detailed weights through distance, there is a temptation to take it further and consider everyone

else in the dataset as a neighbor whose weight will then get modulated by the distance effect shown above. However,

although conceptually correct, this approach is not always the most computationally or practical one. Because of the nature of

spatial weights matrices, particularly because of the fact their size is by , they can grow substantially large. A way to

cope with this problem is by making sure they remain fairly sparse (with many zeros). Sparsity is typically ensured in the

case of contiguity or KNN by construction but, with inverse distance, it needs to be imposed as, otherwise, the matrix could

be potentially entirely dense (no zero values other than the diagonal). In practical terms, what is usually done is to impose a

distance threshold beyond which no weight is assigned and interaction is assumed to be non-existent. Beyond being

computationally feasible and scalable, results from this approach usually do not differ much from a fully “dense” one as the

additional information that is included from further observations is almost ignored due to the small weight they receive. In

this context, a commonly used threshold, although not always best, is that which makes every observation to have at least one

neighbor.

Such a threshold can be calculated as follows:

Which can then be used to calculate an inverse distance weights matrix:

Block weights

Block weights connect every observation in a dataset that belongs to the same category in a list provided ex-ante. Usually,

this list will have some relation to geography an the location of the observations but, technically speaking, all one needs to

create block weights is a list of memberships. In this class of weights, neighboring observations, those in the same group, are

assigned a weight of one, and the rest receive a weight of zero.

In this example, we will build a spatial weights matrix that connects every LSOA with all the other ones in the same MSOA.

See how the MSOA code is expressed for every LSOA:

N N

min_thr = weights.min_threshold_distance(pts)
min_thr

939.7373992113434

w_min_dist = weights.DistanceBand.from_dataframe(db, min_thr, binary=False)

db.head()

Skip to main content

To build a block spatial weights matrix that connects as neighbors all the LSOAs in the same MSOA, we only require the

mapping of codes. Using PySAL , this is a one-line task:

In this case, PySAL does not allow to pass the argument idVariable as above. As a result, observations are named after

the order the occupy in the list:

The first element is neighbor of observations 218, 129, 220, and 292, all of them with an assigned weight of 1. However, it is

possible to correct this by using the additional method remap_ids :

Now if you try w_bloc[0] , it will return an error. But if you query for the neighbors of an observation by its LSOA id, it

will work:

LSOA11CD MSOA11CD geometry

LSOA11CD

E01006512 E01006512 E02001377 POLYGON ((336103.358 389628.580, 336103.416 38...

E01006513 E01006513 E02006932 POLYGON ((335173.781 389691.538, 335169.798 38...

E01006514 E01006514 E02001383 POLYGON ((335495.676 389697.267, 335495.444 38...

E01006515 E01006515 E02001383 POLYGON ((334953.001 389029.000, 334951.000 38...

E01006518 E01006518 E02001390 POLYGON ((335354.015 388601.947, 335354.000 38...

w_block = weights.block_weights(db['MSOA11CD'])

/opt/conda/lib/python3.8/site-packages/libpysal/weights/weights.py:172: UserWarning: The weight
 There are 61 disconnected components.
 warnings.warn(message)

w_block[0]

{218: 1.0, 219: 1.0, 220: 1.0, 292: 1.0}

w_block.remap_ids(db.index)

w_block['E01006512']

{'E01006747': 1.0, 'E01006748': 1.0, 'E01006751': 1.0, 'E01033763': 1.0}

Skip to main content

Standardizing W matrices

In the context of many spatial analysis techniques, a spatial weights matrix with raw values (e.g. ones and zeros for the

binary case) is not always the best suiting one for analysis and some sort of transformation is required. This implies

modifying each weight so they conform to certain rules. PySAL has transformations baked right into the W object, so it is

possible to check the state of an object as well as to modify it.

Consider the original queen weights, for observation E01006690 :

Since it is contiguity, every neighbor gets one, the rest zero weight. We can check if the object w_queen has been

transformed or not by calling the argument transform :

where O stands for “original”, so no transformations have been applied yet. If we want to apply a row-based transformation,

so every row of the matrix sums up to one, we modify the transform attribute as follows:

Now we can check the weights of the same observation as above and find they have been modified:

w_queen['E01006690']

{'E01006697': 1.0,
 'E01006692': 1.0,
 'E01033763': 1.0,
 'E01006759': 1.0,
 'E01006695': 1.0,
 'E01006720': 1.0,
 'E01006691': 1.0}

w_queen.transform

'O'

w_queen.transform = 'R'

w_queen['E01006690']

{'E01006697': 0.14285714285714285,
 'E01006692': 0.14285714285714285,
 'E01033763': 0.14285714285714285,
 'E01006759': 0.14285714285714285,
 'E01006695': 0.14285714285714285,
 'E01006720': 0.14285714285714285,
 'E01006691': 0.14285714285714285}

Skip to main content

Save for precission issues, the sum of weights for all the neighbors is one:

Returning the object back to its original state involves assigning transform back to original:

PySAL supports the following transformations:

O : original, returning the object to the initial state.

B : binary, with every neighbor having assigned a weight of one.

R : row, with all the neighbors of a given observation adding up to one.

V : variance stabilizing, with the sum of all the weights being constrained to the number of observations.

Reading and Writing spatial weights in PySAL

Sometimes, if a dataset is very detailed or large, it can be costly to build the spatial weights matrix of a given geography and,

despite the optimizations in the PySAL code, the computation time can quickly grow out of hand. In these contexts, it is

useful to not have to re-build a matrix from scratch every time we need to re-run the analysis. A useful solution in this case is

to build the matrix once, and save it to a file where it can be reloaded at a later stage if needed.

PySAL has a common way to write any kind of W object into a file using the command open . The only element we need to

decide for ourselves beforehand is the format of the file. Although there are several formats in which spatial weight matrices

can be stored, we will focused on the two most commonly used ones:

.gal files for contiguity weights

Contiguity spatial weights can be saved into a .gal file with the following commands:

pd.Series(w_queen['E01006690']).sum()

0.9999999999999998

w_queen.transform = 'O'

w_queen['E01006690']

{'E01006697': 1.0,
 'E01006692': 1.0,
 'E01033763': 1.0,
 'E01006759': 1.0,
 'E01006695': 1.0,
 'E01006720': 1.0,
 'E01006691': 1.0}

Skip to main content

The process is composed by the following three steps:

1. Open a target file for w riting the matrix, hence the w argument. In this case, if a file imd_queen.gal already exists, it

will be overwritten, so be careful.

2. Write the W object into the file.

3. Close the file. This is important as some additional information is written into the file at this stage, so failing to close the

file might have unintended consequences.

Once we have the file written, it is possible to read it back into memory with the following command:

Note how we now use r instead of w because we are r eading the file, and also notice how we open the file and, in the

same line, we call read() directly.

.gwt files for distance-based weights.

A very similar process to the one above can be used to read and write distance based weights. The only difference is

specifying the right file format, .gwt in this case. So, if we want to write w_dist1km into a file, we will run:

And if we want to read the file back in, all we need to do is:

Open file to write into
fo = psopen('imd_queen.gal', 'w')
Write the matrix into the file
fo.write(w_queen)
Close the file
fo.close()

w_queen2 = psopen('imd_queen.gal', 'r').read()
w_queen2

<libpysal.weights.weights.W at 0x7fba351d76a0>

Open file
fo = psopen('imd_dist1km.gwt', 'w')
Write matrix into the file
fo.write(w_dist1kmC)
Close file
fo.close()

w_dist1km2 = psopen('imd_dist1km.gwt', 'r').read()

Skip to main content

Note how, in this case, you will probably receive a warning alerting you that there was not a DBF relating to the file. This is

because, by default, PySAL takes the order of the observations in a .gwt from a shapefile. If this is not provided, PySAL

cannot entirely determine all the elements and hence the resulting W might not be complete (islands, for example, can be

missing). To fully complete the reading of the file, we can remap the ids as we have seen above:

Spatial Lag

One of the most direct applications of spatial weight matrices is the so-called spatial lag. The spatial lag of a given variable is

the product of a spatial weight matrix and the variable itself:

where is a Nx1 vector with the values of the variable. Recall that the product of a matrix and a vector equals the sum of a

row by column element multiplication for the resulting value of a given row. In terms of the spatial lag:

If we are using row-standardized weights, becomes a proportion between zero and one, and can be seen as the

average value of in the neighborhood of .

For this illustration, we will use the area of each polygon as the variable of interest. And to make things a bit nicer later on,

we will keep the log of the area instead of the raw measurement. Hence, let’s create a column for it:

The spatial lag is a key element of many spatial analysis techniques, as we will see later on and, as such, it is fully supported

in PySAL . To compute the spatial lag of a given variable, area for example:

/opt/conda/lib/python3.8/site-packages/libpysal/io/iohandlers/gwt.py:204: RuntimeWarning: DBF
 warn(msg, RuntimeWarning)
/opt/conda/lib/python3.8/site-packages/libpysal/weights/weights.py:172: UserWarning: The weight
 There are 2 disconnected components.
 warnings.warn(message)

w_dist1km2.remap_ids(db.index)

Ysl = WY

Y

ysl−i = ∑
j

wijyj

wij ysl−i

Y i

db["area"] = np.log(db.area)

Skip to main content

Line 4 contains the actual computation, which is highly optimized in PySAL . Note that, despite passing in a pd.Series

object, the output is a numpy array. This however, can be added directly to the table db :

Moran Plot

The Moran Plot is a graphical way to start exploring the concept of spatial autocorrelation, and it is a good application of

spatial weight matrices and the spatial lag. In essence, it is a standard scatter plot in which a given variable (area , for

example) is plotted against its own spatial lag. Usually, a fitted line is added to include more information:

Row-standardize the queen matrix
w_queen.transform = 'R'
Compute spatial lag of `area`
w_queen_score = weights.lag_spatial(w_queen, db["area"])
Print the first five elements
w_queen_score[:5]

array([12.40660189, 12.54225296, 12.28284814, 12.61675295, 12.55042815])

db['w_area'] = w_queen_score

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot values
sns.regplot(x="area", y="w_area", data=db, ci=None)
Display
plt.show()

Skip to main content

In order to easily compare different scatter plots and spot outlier observations, it is common practice to standardize the values

of the variable before computing its spatial lag and plotting it. This can be accomplished by substracting the average value

and dividing the result by the standard deviation:

where is the standardized version of , is the average of the variable, and its standard deviation.

Creating a standardized Moran Plot implies that average values are centered in the plot (as they are zero when standardized)

and dispersion is expressed in standard deviations, with the rule of thumb of values greater or smaller than two standard

deviations being outliers. A standardized Moran Plot also partitions the space into four quadrants that represent different

situations:

1. High-High (HH): values above average surrounded by values above average.

2. Low-Low (LL): values below average surrounded by values below average.

3. High-Low (HL): values above average surrounded by values below average.

4. Low-High (LH): values below average surrounded by values above average.

These will be further explored once spatial autocorrelation has been properly introduced in subsequent blocks.

zi =
y − ȳ

σy

zi yi ȳ σ

Skip to main content

Do-It-Yourself
In this section, we are going to try

Standardize the area
std_db = (db['area'] - db['area'].mean()) / db['area'].std()
Compute the spatial lag of the standardized version and save is as a
Series indexed as the original variable
std_w_db = pd.Series(
 weights.lag_spatial(w_queen, std_db), index=std_db.index
)
Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot values
sns.regplot(x=std_db, y=std_w_db, ci=None)
Add vertical and horizontal lines
plt.axvline(0, c='k', alpha=0.5)
plt.axhline(0, c='k', alpha=0.5)
Display
plt.show()

import geopandas
import contextily
from pysal.lib import examples

Skip to main content

Task I: NYC tracts

In this task we will explore contiguity weights.To do it, we will load Census tracts for New York City. Census tracts are the

geography the US Census Burearu uses for areas around 4,000 people. We will use a dataset prepared as part of the PySAL

examples. Geographically, this is a set of polygons that cover all the area of the city of New York.

A bit of info on the dataset:

To check out the location of the files that make up the dataset, we can load it with load_example and inspect with

get_file_list :

NYC Education + Socio-DemographicsNYC Education + Socio-Demographics

</> GeoDa

+
-

/tmp/ipykernel_9836/2071694180.py:1: UserWarning: Shapely 2.0 is installed, but because PyGEOS

import os
os.environ['USE_PYGEOS'] = '0'
import geopandas

In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS
 import geopandas

examples.explain("NYC Socio-Demographics")

Load example (this automatically downloads if not available)
nyc_data = examples.load_example("NYC Socio-Demographics")
Print the paths to all the files in the dataset
nyc_data.get_file_list()

Skip to main content

http://weights.to/
https://pysal.org/libpysal/tutorial.html?highlight=examples#example-datasets
https://geodacenter.github.io/data-and-lab

And let’s read the shapefile:

Now with the nyc object ready to go, here a few tasks for you to complete:

Create a contiguity matrix using the queen criterion

Let’s focus on Central Park. The corresponding polygon is ID 142 . How many neighbors does it have?

Try to reproduce the zoom plot in the previous section.

Create a block spatial weights matrix where every tract is connected to other tracts in the same borough. For that, use the

borocode column of the nyc table.

['/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/NYC_Tract_ACS2008_12.prj',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/NYC_Tract_ACS2008_12.shp',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/__MACOSX/._NYC_Tract_ACS2008_12.shp',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/__MACOSX/._NYC_Tract_ACS2008_12.dbf',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/__MACOSX/._NYC_Tract_ACS2008_12.prj',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/__MACOSX/._NYC_Tract_ACS2008_12.shx',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/NYC_Tract_ACS2008_12.shx',
 '/home/jovyan/.local/share/pysal/NYC_Socio-Demographics/NYC_Tract_ACS2008_12.dbf']

nyc = geopandas.read_file(nyc_data.get_path("NYC_Tract_ACS2008_12.shp"))
nyc.plot(figsize=(9, 9))

<Axes: >

Skip to main content

https://en.wikipedia.org/wiki/Central_Park
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-e-queen-zoom

Compare the number of neighbors by tract for the two weights matrices, which one has more? why?

Task II: Japanese cities

In this task, you will be generating spatial weights matrices based on distance. We will test your skills on this using a dataset

of Japanese urban areas provided by OECD. Let’s get it ready for you to work on it directly.

The data is available over the web on this address but it is not accessible programmatically. For that reason, we have cached

it on the data folder, and we can read it directly from there into a GeoDataFrame :

If we make a quick plot, we can see these are polygons covering the part of the Japanese geography that is considered urban

by their analysis:

jp_cities = geopandas.read_file('../data/Japan.zip')
jp_cities.head()

fuacode_si fuaname fuaname_en class_code iso3 name geometry

0 JPN19 Kagoshima Kagoshima 3.0 JPN Japan MULTIPOLYGON Z (((130.67888 31.62931
0.00000, ...

1 JPN20 Himeji Himeji 3.0 JPN Japan MULTIPOLYGON Z (((134.51537 34.65958
0.00000, ...

2 JPN50 Hitachi Hitachi 3.0 JPN Japan POLYGON Z ((140.58715 36.94447 0.00000,
140.61...

3 JPN08 Hiroshima Hiroshima 3.0 JPN Japan MULTIPOLYGON Z (((132.29648 34.19932
0.00000, ...

4 JPN03 Toyota Toyota 4.0 JPN Japan MULTIPOLYGON Z (((137.04096 34.73242
0.00000, ...

ax = jp_cities.plot(color="red", alpha=0.5, figsize=(9, 9))
contextily.add_basemap(ax, crs=jp_cities.crs)

Skip to main content

http://www.oecd.org/cfe/regionaldevelopment/functional-urban-areas.htm
http://www.oecd.org/
https://www.oecd.org/cfe/regionaldevelopment/JPN.zip

For this example, we need two transformations: lon/lat coordinates to a geographical projection, and polygons to points. To

calculate distances effectively, we need to ensure the coordinates of our geographic data are expressed in metres (or a similar

measurement unit). The original dataset is expressed in lon/lat degrees:

jp_cities.crs

<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

Skip to main content

We can use the Japan Plane Rectangular CS XVII system (EPSG:2459), which is expressed in metres:

So the resulting table is in metres:

Now, distances are easier to calculate between points than between polygons. Hence, we will convert the urban areas into

their centroids:

So the result is a seet of points expressed in metres:

jp = jp_cities.to_crs(epsg=2459)

jp.crs

<Projected CRS: EPSG:2459>
Name: JGD2000 / Japan Plane Rectangular CS XVII
Axis Info [cartesian]:
- X[north]: Northing (metre)
- Y[east]: Easting (metre)
Area of Use:
- name: Japan - onshore Okinawa-ken east of 130°E.
- bounds: (131.12, 24.4, 131.38, 26.01)
Coordinate Operation:
- name: Japan Plane Rectangular CS zone XVII
- method: Transverse Mercator
Datum: Japanese Geodetic Datum 2000
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich

jp.geometry = jp.geometry.centroid

jp.plot()

Skip to main content

http://epsg.io/2459

With these at hand, tackle the following challenges:

Generate a spatial weights matrix with five nearest neighbors

Generate a spatial weights matrix with a 100km distance band

Compare the two in terms of average number of neighbors. What are the main differences you can spot? In which cases

do you think one criterion would be preferable over the other?

The final task below is a bit more involved, so do not despair if you cannot get it to work completely!

Focus on Tokyo (find the row in the table through a query search as we saw when considering Index-based queries) and the

100km spatial weights generated above. Try to create a figure similar to the one in the lecture. Here’s a recipe:

1. Generate a buffer of 100Km around the Tokyo centroid

2. Start the plot with the Tokyo urban area polygon (jp_cities) in one color (e.g. red)

3. Add its neighbors in, say blue

4. Add their centroids in a third different color

5. Layer on top the buffer, making sure only the edge is colored

6. [Optional] Add a basemap

If all goes well, your figure should look, more or less, like:

<Axes: >

Warning⚠

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#lab-b-index-queries
https://darribas.org/gds_course/content/slides/block_E_ii.html

Task III: Spatial Lag

For this task, we will rely on the AHAH dataset. Create the spatial lag of the overall score, and generate a Moran plot. Can

you tell any overall pattern? What do you think it means?

Concepts
In this block we delve into a few statistical methods designed to characterise spatial patterns of data. How phenomena are

distributed over space is at the centre of many important questions. From economic inequality, to the management of disease

outbreaks, being able to statistically characterise the spatial pattern is the first step into understanding causes and thinking

about solutions in the form of policy.

This section is split into a few more chunks than usual, each of them more byte size covering a single concept at a time. Each

chunk builds on each other sequentially, so watch them in the order presented here. They are all non-trivial ideas, so focus all

/opt/conda/lib/python3.10/site-packages/libpysal/weights/weights.py:172: UserWarning: The weigh
 There are 9 disconnected components.
 There are 4 islands with ids: 14, 17, 30, 54.
 warnings.warn(message)

Skip to main content

The slides used in the clip are available at:

[HTML]

[PDF]

The slides used in the clip are available at:

[HTML]

[PDF]

The slides used in the clip are available at:

q y p y

your brain power to understand them while tackling each of the sections!

ESDA

ESDA stands for Exploratory Spatial Data Analysis, and it is a family of techniques to explore and characterise spatial

patterns in data. This clip introduces ESDA conceptually.

Spatial autocorrelation

In this clip, we define and explain spatial autocorrelation, a core concept to understand what ESDA is about. We also go over

the different types and scales at which spatial autocorrelation can be relevant.

Global spatial autocorrelation

Here we discuss one of the first expressions to formalising spatial patterns: global spatial autocrrelation.

0:00 / 0:00

0:00 / 0:00

Slides

Slides

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_F_i.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_F_i.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_F_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_F_ii.pdf

[HTML]

[PDF]

The slides used in the clip are available at:

[HTML]

[PDF]

Once you have seen the clip, check out this interactive online:

launchlaunch binderbinder

The app is an interactive document that allows you to play with a hypothetical geography made up of a regular grid. A

synthetic variable (one created artificially) is distributed across the grid following a varying degree of global spatial

autocorrelation, which is also visualised using a Moran Plot. Through a slider, you can change the sign (positive/negative)

and strength of global spatial autocorrelation and see how that translates on the appearance of the map and how it is also

reflected in the shape of the Moran Plot.

Local spatial autocorrelation

In this final clip, we discuss a more modern concept that takes the notion of spatial autocorrelation to a finer scale.

If you like this clip and would like to know a bit more about local spatial autocorrelation, the chapter on local spatial

autocorrelation in the GDS book (in progress) reyABwolf is a good “next step”.

Further readings

0:00 / 0:00

0:00 / 0:00

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_F_iii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_F_iii.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_F_iv.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_F_iv.pdf
http://mybinder.org/repo/darribas/int_sp_auto

If this section was of your interest, there is plenty more you can read and explore. The following are good “next steps” to

delve a bit deeper into exploratory spatial data analysis:

Spatial autocorrelation chapter on the GDS book (in progress) reyABwolf.

Symanzik’s chapter on ESDA in the Handbook of Regional Science symanzik2014exploratory introduces the main

concepts behind ESDA

Haining’s chapter in the Handbook of Regional Science haining2014spatial is a good historical perspective of the origins

and motivations behind most of global and local measures of spatial autocorrelation.

Hands-on

Spatial autocorrelation and Exploratory Spatial Data Analysis

Spatial autocorrelation has to do with the degree to which the similarity in values between observations in a dataset is related

to the similarity in locations of such observations. Not completely unlike the traditional correlation between two variables -

which informs us about how the values in one variable change as a function of those in the other- and analogous to its time-

series counterpart -which relates the value of a variable at a given point in time with those in previous periods-, spatial

autocorrelation relates the value of the variable of interest in a given location, with values of the same variable in surrounding

locations.

A key idea in this context is that of spatial randomness: a situation in which the location of an observation gives no

information whatsoever about its value. In other words, a variable is spatially random if it is distributed following no

discernible pattern over space. Spatial autocorrelation can thus be formally defined as the “absence of spatial randomness”,

which gives room for two main classes of autocorrelation, similar to the traditional case: positive spatial autocorrelation,

when similar values tend to group together in similar locations; and negative spatial autocorrelation, in cases where similar

values tend to be dispersed and further apart from each other.

In this session we will learn how to explore spatial autocorrelation in a given dataset, interrogating the data about its

presence, nature, and strength. To do this, we will use a set of tools collectively known as Exploratory Spatial Data Analysis

(ESDA), specifically designed for this purpose. The range of ESDA methods is very wide and spans from less sophisticated

approaches like choropleths and general table querying, to more advanced and robust methodologies that include statistical

inference and an explicit recognition of the geographical dimension of the data. The purpose of this session is to dip our toes

into the latter group.

ESDA techniques are usually divided into two main groups: tools to analyze global, and local spatial autocorrelation. The

former consider the overall trend that the location of values follows, and makes possible statements about the degree of

clustering in the dataset. Do values generally follow a particular pattern in their geographical distribution? Are similar

values closer to other similar values than we would expect from pure chance? These are some of the questions that tools for
Skip to main content

global spatial autocorrelation allow to answer. We will practice with global spatial autocorrelation by using Moran’s I

statistic.

Tools for local spatial autocorrelation instead focus on spatial instability: the departure of parts of a map from the general

trend. The idea here is that, even though there is a given trend for the data in terms of the nature and strength of spatial

association, some particular areas can diverege quite substantially from the general pattern. Regardless of the overall degree

of concentration in the values, we can observe pockets of unusually high (low) values close to other high (low) values, in

what we will call hot(cold)spots. Additionally, it is also possible to observe some high (low) values surrounded by low (high)

values, and we will name these “spatial outliers”. The main technique we will review in this session to explore local spatial

autocorrelation is the Local Indicators of Spatial Association (LISA).

Data

For this session, we will use the results of the 2016 referendum vote to leave the EU, at the local authority level. In particular,

we will focus on the spatial distribution of the vote to Leave, which ended up winning. From a technical point of view, you

will be working with polygons which have a value (the percentage of the electorate that voted to Leave the EU) attached to

them.

All the necessary data have been assembled for convenience in a single file that contains geographic information about each

local authority in England, Wales and Scotland, as well as the vote attributes. The file is in the geospatial format GeoPackage,

which presents several advantages over the more traditional shapefile (chief among them, the need of a single file instead of

several). The file is available as a download from the course website.

import seaborn as sns
import pandas as pd
import esda
from pysal.lib import weights
from splot.esda import (
 moran_scatterplot, lisa_cluster, plot_local_autocorrelation
)
import geopandas as gpd
import numpy as np
import contextily as ctx
import matplotlib.pyplot as plt

Read the file in
br = gpd.read_file(
 "http://darribas.org/gds_course/content/data/brexit.gpkg"
)

/opt/conda/lib/python3.8/site-packages/geopandas/geodataframe.py:577: RuntimeWarning: Sequentia
 for feature in features_lst:

Skip to main content

http://www.geopackage.org/

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Now let’s index it on the local authority IDs, while keeping those as a column too:

Preparing the data

Let’s get a first view of the data:

Alternative

br = gpd.read_file("brexit.gpkg")

Index table on the LAD ID
br = br.set_index("lad16cd", drop=False)
Display summary
br.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 380 entries, E06000001 to W06000024
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 objectid 380 non-null int64
 1 lad16cd 380 non-null object
 2 lad16nm 380 non-null object
 3 Pct_Leave 380 non-null float64
 4 geometry 380 non-null geometry
dtypes: float64(1), geometry(1), int64(1), object(2)
memory usage: 17.8+ KB

Plot polygons
ax = br.plot(alpha=0.5, color='red');
Add background map, expressing target CRS so the basemap can be
reprojected (warped)
ctx.add_basemap(ax, crs=br.crs)

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/data/brexit.gpkg

Spatial weights matrix

As discused before, a spatial weights matrix is the way geographical space is formally encoded into a numerical form so it is

easy for a computer (or a statistical method) to understand. We have seen already many of the conceptual ways in which we

can define a spatial weights matrix, such as contiguity, distance-based, or block.

For this example, we will show how to build a queen contiguity matrix, which considers two observations as neighbors if

they share at least one point of their boundary. In other words, for a pair of local authorities in the dataset to be considered

neighbours under this , they will need to be sharing border or, in other words, “touching” each other to some degree.

Technically speaking, we will approach building the contiguity matrix in the same way we did in Lab 5. We will begin with a

GeoDataFrame and pass it on to the queen contiguity weights builder in PySAL

(ps.weights.Queen.from_dataframe). We will also make sure our table of data is previously indexed on the local

authority code, so the is also indexed on that form.

Now, the w object we have just is of the same type of any other one we have created in the past. As such, we can inspect it in

the same way. For example, we can check who is a neighbor of observation E08000012 :

W

W

Create the spatial weights matrix
%time w = weights.Queen.from_dataframe(br, idVariable="lad16cd")

CPU times: user 2.6 s, sys: 76.4 ms, total: 2.68 s
Wall time: 2.68 s

/opt/conda/lib/python3.8/site-packages/libpysal/weights/weights.py:172: UserWarning: The weight
 There are 7 disconnected components.
 There are 6 islands with ids: E06000046, E06000053, S12000013, S12000023, S12000027, W06000001
 warnings.warn(message)

w['E08000012']

Skip to main content

However, the cell where we computed returned a warning on “islands”. Remember these are islands not necessarily in the

geographic sense (although some of them will be), but in the mathematical sense of the term: local authorities that are not

sharing border with any other one and thus do not have any neighbors. We can inspect and map them to get a better sense of

what we are dealing with:

In this case, all the islands are indeed “real” islands. These cases can create issues in the analysis and distort the results. There

are several solutions to this situation such as connecting the islands to other observations through a different criterium (e.g.

nearest neighbor), and then combining both spatial weights matrices. For convenience, we will remove them from the dataset

because they are a small sample and their removal is likely not to have a large impact in the calculations.

Technically, this amounts to a subsetting, very much like we saw in the first weeks of the course, although in this case we

will use the drop command, which comes in very handy in these cases:

Once we have the set of local authorities that are not an island, we need to re-calculate the weights matrix:

{'E08000011': 1.0, 'E08000014': 1.0, 'E06000006': 1.0}

W

ax = br.plot(color='k', figsize=(9, 9))
br.loc[w.islands, :].plot(color='red', ax=ax);

br = br.drop(w.islands)

Skip to main content

And, finally, let us row-standardize it to make sure every row of the matrix sums up to one:

Now, because we have row-standardize them, the weight given to each of the three neighbors is 0.33 which, all together, sum

up to one.

Spatial lag

Once we have the data and the spatial weights matrix ready, we can start by computing the spatial lag of the percentage of

votes that went to leave the EU. Remember the spatial lag is the product of the spatial weights matrix and a given variable

and that, if is row-standardized, the result amounts to the average value of the variable in the neighborhood of each

observation.

We can calculate the spatial lag for the variable Pct_Leave and store it directly in the main table with the following line of

code:

Let us have a quick look at the resulting variable, as compared to the original one:

Create the spatial weights matrix
NOTE: this might take a few minutes as the geometries are
are very detailed
%time w = weights.Queen.from_dataframe(br, idVariable="lad16cd")

CPU times: user 2.08 s, sys: 58.4 ms, total: 2.14 s
Wall time: 2.15 s

Row standardize the matrix
w.transform = 'R'

w['E08000012']

{'E08000011': 0.3333333333333333,
 'E08000014': 0.3333333333333333,
 'E06000006': 0.3333333333333333}

W

br['w_Pct_Leave'] = weights.lag_spatial(w, br['Pct_Leave'])

br[['lad16cd', 'Pct_Leave', 'w_Pct_Leave']].head()

Skip to main content

The way to interpret the spatial lag (w_Pct_Leave) for say the first observation is as follow: Hartlepool, where 69,6% of

the electorate voted to leave is surrounded by neighbouring local authorities where, on average, almost 60% of the electorate

also voted to leave the EU. For the purpose of illustration, we can in fact check this is correct by querying the spatial weights

matrix to find out Hartepool’s neighbors:

And then checking their values:

And the average value, which we saw in the spatial lag is 61.8, can be calculated as follows:

For some of the techniques we will be seeing below, it makes more sense to operate with the standardized version of a

variable, rather than with the raw one. Standardizing means to substract the average value and divide by the standard

deviation each observation of the column. This can be done easily with a bit of basic algebra in Python:

lad16cd Pct_Leave w_Pct_Leave

lad16cd

E06000001 E06000001 69.57 59.640000

E06000002 E06000002 65.48 60.526667

E06000003 E06000003 66.19 60.376667

E06000004 E06000004 61.73 60.488000

E06000005 E06000005 56.18 57.430000

w.neighbors['E06000001']

['E06000004', 'E06000047']

neis = br.loc[w.neighbors['E06000001'], 'Pct_Leave']
neis

lad16cd
E06000004 61.73
E06000047 57.55
Name: Pct_Leave, dtype: float64

neis.mean()

59.64

Skip to main content

Finally, to be able to explore the spatial patterns of the standardized values, also called sometimes values, we need to create

its spatial lag:

Global Spatial autocorrelation

Global spatial autocorrelation relates to the overall geographical pattern present in the data. Statistics designed to measure

this trend thus characterize a map in terms of its degree of clustering and summarize it. This summary can be visual or

numerical. In this section, we will walk through an example of each of them: the Moran Plot, and Moran’s I statistic of spatial

autocorrelation.

Moran Plot

The moran plot is a way of visualizing a spatial dataset to explore the nature and strength of spatial autocorrelation. It is

essentially a traditional scatter plot in which the variable of interest is displayed against its spatial lag. In order to be able to

interpret values as above or below the mean, and their quantities in terms of standard deviations, the variable of interest is

usually standardized by substracting its mean and dividing it by its standard deviation.

Technically speaking, creating a Moran Plot is very similar to creating any other scatter plot in Python, provided we have

standardized the variable and calculated its spatial lag beforehand:

br['Pct_Leave_std'] = (
 br['Pct_Leave'] - br['Pct_Leave'].mean()
) / br['Pct_Leave'].std()

z

br['w_Pct_Leave_std'] = weights.lag_spatial(w, br['Pct_Leave_std'])

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot values
sns.regplot(x='Pct_Leave_std', y='w_Pct_Leave_std', data=br, ci=None)
Add vertical and horizontal lines
plt.axvline(0, c='k', alpha=0.5)
plt.axhline(0, c='k', alpha=0.5)
Display
plt.show()

Skip to main content

The figure above displays the relationship between the standardized percentage which voted to Leave the EU

(Pct_Leave_std) and its spatial lag which, because the that was used is row-standardized, can be interpreted as the

average percentage which voted to Leave in the surrounding areas of a given Local Authority. In order to guide the

interpretation of the plot, a linear fit is also included in the post. This line represents the best linear fit to the scatter plot or, in

other words, what is the best way to represent the relationship between the two variables as a straight line.

The plot displays a positive relationship between both variables. This is associated with the presence of positive spatial

autocorrelation: similar values tend to be located close to each other. This means that the overall trend is for high values to be

close to other high values, and for low values to be surrounded by other low values. This however does not mean that this is

only situation in the dataset: there can of course be particular cases where high values are surrounded by low ones, and

viceversa. But it means that, if we had to summarize the main pattern of the data in terms of how clustered similar values are,

the best way would be to say they are positively correlated and, hence, clustered over space.

In the context of the example, this can be interpreted along the lines of: local authorities display positive spatial

autocorrelation in the way they voted in the EU referendum. This means that local authorities with high percentage of Leave

voters tend to be located nearby other local authorities where a significant share of the electorate also voted to Leave, and

viceversa.

Moran’s I

The Moran Plot is an excellent tool to explore the data and get a good sense of how much values are clustered over space.

However, because it is a graphical device, it is sometimes hard to condense its insights into a more concise way. For these

W

Skip to main content

cases, a good approach is to come up with a statistical measure that summarizes the figure. This is exactly what Moran’s I is

meant to do.

Very much in the same way the mean summarizes a crucial element of the distribution of values in a non-spatial setting, so

does Moran’s I for a spatial dataset. Continuing the comparison, we can think of the mean as a single numerical value

summarizing a histogram or a kernel density plot. Similarly, Moran’s I captures much of the essence of the Moran Plot. In

fact, there is an even close connection between the two: the value of Moran’s I corresponds with the slope of the linear fit

overlayed on top of the Moran Plot.

In order to calculate Moran’s I in our dataset, we can call a specific function in PySAL directly:

Note how we do not need to use the standardized version in this context as we will not represent it visually.

The method ps.Moran creates an object that contains much more information than the actual statistic. If we want to retrieve

the value of the statistic, we can do it this way:

The other bit of information we will extract from Moran’s I relates to statistical inference: how likely is the pattern we

observe in the map and Moran’s I captures in its value to be generated by an entirely random process? If we considered the

same variable but shuffled its locations randomly, would we obtain a map with similar characteristics?

The specific details of the mechanism to calculate this are beyond the scope of the session, but it is important to know that a

small enough p-value associated with the Moran’s I of a map allows to reject the hypothesis that the map is random. In other

words, we can conclude that the map displays more spatial pattern that we would expect if the values had been randomly

allocated to a particular location.

The most reliable p-value for Moran’s I can be found in the attribute p_sim :

That is just 0.1% and, by standard terms, it would be considered statistically significant. We can quickly ellaborate on its

intuition. What that 0.001 (or 0.1%) means is that, if we generated a large number of maps with the same values but

randomly allocated over space, and calculated the Moran’s I statistic for each of those maps, only 0.1% of them would

mi = esda.Moran(br['Pct_Leave'], w)

mi.I

0.6228641407137806

mi.p_sim

0.001

Skip to main content

display a larger (absolute) value than the one we obtain from the real data, and the other 99.9% of the random maps would

receive a smaller (absolute) value of Moran’s I. If we remember again that the value of Moran’s I can also be interpreted as

the slope of the Moran Plot, what we have is that, in this case, the particular spatial arrangement of values for the Leave votes

is more concentrated than if the values had been allocated following a completely spatially random process, hence the

statistical significance.

Once we have calculated Moran’s I and created an object like mi , we can use some of the functionality in splot to

replicate the plot above more easily (remember, D.R.Y.):

As a first step, the global autocorrelation analysis can teach us that observations do seem to be positively correlated over

space. In terms of our initial goal to find spatial structure in the attitude towards Brexit, this view seems to align: if the vote

had no such structure, it should not show a pattern over space -technically, it would show a random one.

Local Spatial autocorrelation

Moran’s I is good tool to summarize a dataset into a single value that informs about its degree of clustering. However, it is

not an appropriate measure to identify areas within the map where specific values are located. In other words, Moran’s I can

tell us values are clustered overall, but it will not inform us about where the clusters are. For that purpose, we need to use a

local measure of spatial autocorrelation. Local measures consider each single observation in a dataset and operate on them, as

oposed to on the overall data, as global measures do. Because of that, they are not good a summarizing a map, but they allow

to obtain further insight.

moran_scatterplot(mi);

Skip to main content

http://darribas.org/gds19/slides/lecture_02.html#/open-source-packages

In this session, we will consider Local Indicators of Spatial Association (LISAs), a local counter-part of global measures like

Moran’s I. At the core of these method is a classification of the observations in a dataset into four groups derived from the

Moran Plot: high values surrounded by high values (HH), low values nearby other low values (LL), high values among low

values (HL), and viceversa (LH). Each of these groups are typically called “quadrants”. An illustration of where each of these

groups fall into the Moran Plot can be seen below:

So far we have classified each observation in the dataset depending on its value and that of its neighbors. This is only half

way into identifying areas of unusual concentration of values. To know whether each of the locations is a statistically

significant cluster of a given kind, we again need to compare it with what we would expect if the data were allocated in a

completely random way. After all, by definition, every observation will be of one kind of another, based on the comparison

above. However, what we are interested in is whether the strength with which the values are concentrated is unusually high.

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot values
sns.regplot(x='Pct_Leave_std', y='w_Pct_Leave_std', data=br, ci=None)
Add vertical and horizontal lines
plt.axvline(0, c='k', alpha=0.5)
plt.axhline(0, c='k', alpha=0.5)
plt.text(1.75, 0.5, "HH", fontsize=25)
plt.text(1.5, -1.5, "HL", fontsize=25)
plt.text(-2, 1, "LH", fontsize=25)
plt.text(-1.5, -2.5, "LL", fontsize=25)
Display
plt.show()

Skip to main content

http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1995.tb00338.x/abstract

This is exactly what LISAs are designed to do. As before, a more detailed description of their statistical underpinnings is

beyond the scope in this context, but we will try to shed some light into the intuition of how they go about it. The core idea is

to identify cases in which the comparison between the value of an observation and the average of its neighbors is either more

similar (HH, LL) or dissimilar (HL, LH) than we would expect from pure chance. The mechanism to do this is similar to the

one in the global Moran’s I, but applied in this case to each observation, resulting then in as many statistics as original

observations.

LISAs are widely used in many fields to identify clusters of values in space. They are a very useful tool that can quickly

return areas in which values are concentrated and provide suggestive evidence about the processes that might be at work. For

that, they have a prime place in the exploratory toolbox. Examples of contexts where LISAs can be useful include:

identification of spatial clusters of poverty in regions, detection of ethnic enclaves, delineation of areas of particularly

high/low activity of any phenomenon, etc.

In Python, we can calculate LISAs in a very streamlined way thanks to PySAL :

All we need to pass is the variable of interest -percentage of Leave votes- and the spatial weights that describes the

neighborhood relations between the different observation that make up the dataset.

Because of their very nature, looking at the numerical result of LISAs is not always the most useful way to exploit all the

information they can provide. Remember that we are calculating a statistic for every sigle observation in the data so, if we

have many of them, it will be difficult to extract any meaningful pattern. Instead, what is typically done is to create a map, a

cluster map as it is usually called, that extracts the significant observations (those that are highly unlikely to have come from

pure chance) and plots them with a specific color depending on their quadrant category.

All of the needed pieces are contained inside the lisa object we have created above. But, to make the map making more

straightforward, it is convenient to pull them out and insert them in the main data table, br :

Let us stop for second on these two steps. First, the significant column. Similarly as with global Moran’s I, PySAL is

automatically computing a p-value for each LISA. Because not every observation represents a statistically significant one, we

want to identify those with a p-value small enough that rules out the possibility of obtaining a similar situation from pure

chance. Following a similar reasoning as with global Moran’s I, we select 5% as the threshold for statistical significance. To

identify these values, we create a variable, significant , that contains True if the p-value of the observation is satisfies

the condition, and False otherwise. We can check this is the case:

lisa = esda.Moran_Local(br['Pct_Leave'], w)

Break observations into significant or not
br['significant'] = lisa.p_sim < 0.05
Store the quadrant they belong to
br['quadrant'] = lisa.q

Skip to main content

And the first five p-values can be checked by:

Note how the third and fourth are smaller than 0.05, as the variable significant correctly identified.

Second, the quadrant each observation belongs to. This one is easier as it comes built into the lisa object directly:

The correspondence between the numbers in the variable and the actual quadrants is as follows:

1: HH

2: LH

3: LL

4: HL

With these two elements, significant and quadrant , we can build a typical LISA cluster map combining the mapping

skills with what we have learned about subsetting and querying tables:

We can create a quick LISA cluster map with splot :

br['significant'].head()

lad16cd
E06000001 False
E06000002 False
E06000003 False
E06000004 True
E06000005 False
Name: significant, dtype: bool

lisa.p_sim[:5]

array([0.199, 0.107, 0.113, 0.046, 0.22])

br['quadrant'].head()

lad16cd
E06000001 1
E06000002 1
E06000003 1
E06000004 1
E06000005 1
Name: quadrant, dtype: int64

Skip to main content

Or, if we want to have more control over what is being displayed, and how each component is presented, we can “cook” the

plot ourselves:

lisa_cluster(lisa, br);

Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot insignificant clusters
ns = br.loc[br['significant']==False, 'geometry']
ns.plot(ax=ax, color='k')
Plot HH clusters
hh = br.loc[(br['quadrant']==1) & (br['significant']==True), 'geometry']
hh.plot(ax=ax, color='red')
Plot LL clusters
ll = br.loc[(br['quadrant']==3) & (br['significant']==True), 'geometry']
ll.plot(ax=ax, color='blue')
Plot LH clusters
lh = br.loc[(br['quadrant']==2) & (br['significant']==True), 'geometry']
lh.plot(ax=ax, color='#83cef4')
Plot HL clusters
hl = br.loc[(br['quadrant']==4) & (br['significant']==True), 'geometry']
hl.plot(ax=ax, color='#e59696')
Style and draw
f.suptitle('LISA for Brexit vote', size=30)
f.set_facecolor('0.75')
ax.set_axis_off()
plt.show()

Skip to main content

The map above displays the LISA results of the Brexit vote. In bright red, we find those local authorities with an unusual

concentration of high Leave voters surrounded also by high levels of Leave vote. This corresponds with areas in the East of

England, the Black Country, and East of London. In light red, we find the first type of spatial outliers. These are areas with

high Leave vote but surrounded by areas with low support for leaving the EU (e.g. central London). Finally, in light blue we

find the other type of spatial outlier: local authorities with low Leave support surrounded by other authorities with high

support.

The substantive interpretation of a LISA map needs to relate its output to the original intention of the analyst who created the

map. In this case, our original idea was to explore the spatial structure of support to leaving the EU. The LISA proves a fairly

useful tool in this context. Comparing the LISA map above with the choropleth we started with, we can interpret the LISA as

“simplification” of the detailed but perhaps too complicated picture in the choropleth that focuses the reader’s attention to the

areas that display a particularly high concentration of (dis)similar values, helping the spatial structure of the vote emerge in a

more explicit way. The result of this highlights the relevance that the East of England and the Midlands had in voting to

Leave, as well as the regions of the map where there was a lot less excitement about Leaving.

The results from the LISA statistics can be connected to the Moran plot to visualise where in the scatter plot each type of

polygon falls:

plot_local_autocorrelation(lisa, br, 'Pct_Leave');

Skip to main content

Do-It-Yourself
In this block, the DIY section is more straightforward: we have a few tasks, but they are all around the same dataset. The

tasks incorporates all the bits and pieces we have seen on the hands-on section.

Data preparation

For this section, we are going to revisit the AHAH dataset we saw in the DIY section of Block D. Please head over to the

section to refresh your mind about how to load up the required data. Once you have successfully created the ahah object,

move on to Task I.

Task I: get the dataset ready

With the ahah table on your figertips, complete all the other bits required for the ESDA analysis of spatial autocorrelation:

Make sure your geography does not have islands

Create a spatial weights matrix

Standardise the spatial weights matrix

Create the standardised version of the AHAH score

Create the spatial lag of the main AHAH score

Task II: global spatial autocorrelation

Let’s move on to the analytics:

Visualise the main AHAH score with a Moran Plot

Calculate Moran’s I

What conclusions can you reach from the Moran Plot and Moran’s I? What’s the main spatial pattern?Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/diy_D
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#diy-d-ahah-read

The slides used in the clip are available at:

[HTML]

[PDF]

Task III: local spatial autocorrelation

Now that you have a good sense of the overall pattern in the AHAH dataset, let’s move to the local scale:

Calculate LISA statistics for the LSOA areas

Make a map of significant clusters at the 5%

Can you identify hotspots or coldspots? If so, what do they mean? What about spatial outliers?

Create cluster maps for significance levels 1% and 10%; compare them with the one we obtained. What are the main

changes? Why?

Concepts
This block is all about grouping; grouping of similar observations, areas, records… We start by discussing why grouping, or

clustering in statistical parlance, is important and what it can do for us. Then we move on different types of clustering. We

focus on two: one is traditional non-spatial clustering, or unsupervised learning, for which we cover the most popular

technique; the other one is explicitly spatial clustering, or regionalisation, which imposes additional (geographic) constraints

when grouping observations.

The need to group data

This video motivates the block: what do we mean by “grouping data” and why is it useful?

Non-spatial clustering

Non-spatial clustering is the most common form of data grouping. In this section, we cover the basics and mention a few

approaches. We wrap it up with an example of clustering very dear to human geography: geodemographics.

0:00 / 0:00

Slides

Slides
Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_G_i.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_G_i.pdf

The slides used in the clip are available at:

[HTML]

[PDF]

K-Means

In the clip above, we talk about K-Means, by far the most common clustering algorithm. Watch the video on the expandable

to get the intuition behind the algorithm and better understand how it does its “magic”.

 Show code cell outputs

For a striking visual comparison of how K-Means compares to other clustering algorithms, check out this figure produced by

the scikit-learn project, a Python package for machine learning (more on this later):

https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_0011.png

Fig. 1 Clustering algorithms comparison [Source]

Geodemographics

If you are interested in Geodemographics, a very good reference to get a broader perspective on the idea, origins and history

of the field is “The Predictive Postcode” webber2018predictive, by Richard Webber and Roger Burrows. In particular, the

first four chapters provide an excellent overview.

Furthermore, the clip mentions the Output Area Classification (OAC), which you can access, for example, through the CDRC

Maps platform:

0:00 / 0:00

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_G_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_G_ii.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/lab_G
https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_0011.png
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods

The slides used in the clip are available at:

[HTML]

[PDF]

Regionalisation

Regionalisation is explicitly spatial clustering. We cover the conceptual basics in the following clip:

If you are interested in the idea of regionalisation, a very good place to continue reading is Duque et al. (2007)

duque2007supervised, which was an important inspiration in structuring the clip.

Further readings

0:00 / 0:00

Slides

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_G_iii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_G_iii.pdf

A similar coverage of clustering and regionalisation as provided here, but with a bit more detail, is available on the

corresponding chapter of the GDS book (in progress) reyABwolf.

Hands-on

Clustering, spatial clustering, and geodemographics

This session covers statistical clustering of spatial observations. Many questions and topics are complex phenomena that

involve several dimensions and are hard to summarize into a single variable. In statistical terms, we call this family of

problems multivariate, as oposed to univariate cases where only a single variable is considered in the analysis. Clustering

tackles this kind of questions by reducing their dimensionality -the number of relevant variables the analyst needs to look at-

and converting it into a more intuitive set of classes that even non-technical audiences can look at and make sense of. For this

reason, it is widely use in applied contexts such as policymaking or marketting. In addition, since these methods do not

require many preliminar assumptions about the structure of the data, it is a commonly used exploratory tool, as it can quickly

give clues about the shape, form and content of a dataset.

The basic idea of statistical clustering is to summarize the information contained in several variables by creating a relatively

small number of categories. Each observation in the dataset is then assigned to one, and only one, category depending on its

values for the variables originally considered in the classification. If done correctly, the exercise reduces the complexity of a

multi-dimensional problem while retaining all the meaningful information contained in the original dataset. This is because,

once classified, the analyst only needs to look at in which category every observation falls into, instead of considering the

multiple values associated with each of the variables and trying to figure out how to put them together in a coherent sense.

When the clustering is performed on observations that represent areas, the technique is often called geodemographic analysis.

Although there exist many techniques to statistically group observations in a dataset, all of them are based on the premise of

using a set of attributes to define classes or categories of observations that are similar within each of them, but differ between

groups. How similarity within groups and dissimilarity between them is defined and how the classification algorithm is

operationalized is what makes techniques differ and also what makes each of them particularly well suited for specific

problems or types of data. As an illustration, we will only dip our toes into one of these methods, K-means, which is probably

the most commonly used technique for statistical clustering.

In the case of analysing spatial data, there is a subset of methods that are of particular interest for many common cases in

Geographic Data Science. These are the so-called regionalization techniques. Regionalization methods can take also many

forms and faces but, at their core, they all involve statistical clustering of observations with the additional constraint that

observations need to be geographical neighbors to be in the same category. Because of this, rather than category, we will use

the term area for each observation and region for each category, hence regionalization, the construction of regions from

smaller areas.

Skip to main content

Data

The dataset we will use in this occasion is an extract from the online website AirBnb. AirBnb is a company that provides a

meeting point for people looking for an alternative to a hotel when they visit a city, and locals who want to rent (part of) their

house to make some extra money. The website has a continuously updated listing of all the available properties in a given

city that customers can check and book through. In addition, the website also provides a feedback mechanism by which both

ends, hosts and guests, can rate their experience. Aggregating ratings from guests about the properties where they have

stayed, AirBnb provides additional information for every property, such as an overall cleanliness score or an index of how

good the host is at communicating with the guests.

The original data are provided at the property level and for the entire London. However, since the total number of properties

is very large for the purposes of this notebook, they have been aggregated at the Middle Super Output Area (MSOA), a

geographical unit created by the Office of National Statistics. Although the original source contains information for the

Greater London, the vast majority of properties are located in Inner London, so the data we will use is restricted to that

extent. Even in this case, not every polygon has at least one property. To avoid cases of missing values, the final dataset only

contains those MSOAs with at least one property, so there can be average ratings associated with them.

Our goal in this notebook is to create a classification of areas (MSOAs) in Inner London based on the ratings of the AirBnb

locations. This will allow us to create a typology for the geography of AirBnb in London and, to the extent the AirBnb

locations can say something about the areas where they are located, the classification will help us understand the geography

of residential London a bit better. One general caveat about the conclusions we can draw from an analysis like this one that

derives from the nature of AirBnb data. On the one hand, this dataset is a good example of the kind of analyses that the data

revolution is making possible as, only a few years ago, it would have been very hard to obtain a similarly large survey of

properties with ratings like this one. On the other hand, it is important to keep in mind the kinds of biases that these data are

subject to and thus the limitations in terms of generalizing findings to the general population. At any rate, this dataset is a

great example to learn about statistical clustering of spatial observations, both in a geodemographic as well as in a

regionalization.

Let’s start by reading the main table of MSOAs in:

%matplotlib inline

import seaborn as sns
import pandas as pd
from pysal.lib import weights
import geopandas as gpd
import contextily as cx
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cluster

Skip to main content

http://www.airbnb.com/

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Read the file in
abb = gpd.read_file(
 "https://darribas.org/gds_course/content/data/london_abb.gpkg"
)

/opt/conda/lib/python3.8/site-packages/geopandas/geodataframe.py:577: RuntimeWarning: Sequentia
 for feature in features_lst:

Alternative

abb = gpd.read_file("london_abb.gpkg")

Inspect the structure of the table
abb.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 353 entries, 0 to 352
Data columns (total 18 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 MSOA_CODE 353 non-null object
 1 accommodates 353 non-null float64
 2 bathrooms 353 non-null float64
 3 bedrooms 353 non-null float64
 4 beds 353 non-null float64
 5 number_of_reviews 353 non-null float64
 6 reviews_per_month 353 non-null float64
 7 review_scores_rating 353 non-null float64
 8 review_scores_accuracy 353 non-null float64
 9 review_scores_cleanliness 353 non-null float64
 10 review_scores_checkin 353 non-null float64
 11 review_scores_communication 353 non-null float64
 12 review_scores_location 353 non-null float64
 13 review_scores_value 353 non-null float64
 14 property_count 353 non-null int64
 15 BOROUGH 353 non-null object
 16 GSS_CODE 353 non-null object
 17 geometry 353 non-null geometry
dtypes: float64(13), geometry(1), int64(1), object(3)
memory usage: 49.8+ KB Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/data/london_abb.gpkg

Before we jump into exploring the data, one additional step that will come in handy down the line. Not every variable in the

table is an attribute that we will want for the clustering. In particular, we are interested in review ratings, so we will only

consider those. Hence, let us first manually write them so they are easier to subset:

Later in the section, we will also use what AirBnb calls neighborhoods. Let’s load them in so they are ready when we need

them.

Note that, in comparison to previous datasets, this one is provided in a new format, .geojson . GeoJSON files are a plain

text file (you can open it on any text editor and see its contents) that follows the structure of the JSON format, widely used to

exchange information over the web, adapted for geographic data, hence the geo at the front. GeoJSON files have gained

much popularity with the rise of web mapping and are quickly becoming a de-facto standard for small datasets because they

are readable by humans and by many different platforms. As you can see above, reading them in Python is exactly the same

as reading a shapefile, for example.

Getting to know the data

The best way to start exploring the geography of AirBnb ratings is by plotting each of them into a different map. This will

give us a univariate perspective on each of the variables we are interested in.

Since we have many columns to plot, we will create a loop that generates each map for us and places it on a “subplot” of the

main figure:

ratings = [
 'review_scores_rating',
 'review_scores_accuracy',
 'review_scores_cleanliness',
 'review_scores_checkin',
 'review_scores_communication',
 'review_scores_location',
 'review_scores_value'
]

boroughs = gpd.read_file(
 "https://darribas.org/gds_course/content/data/london_inner_boroughs.geojson"
)

Skip to main content

Create figure and axes (this time it's 9, arranged 3 by 3)
f, axs = plt.subplots(nrows=3, ncols=3, figsize=(12, 12))
Make the axes accessible with single indexing
axs = axs.flatten()
Start the loop over all the variables of interest
for i, col in enumerate(ratings):
 # select the axis where the map will go
 ax = axs[i]
 # Plot the map
 abb.plot(
 column=col,
 ax=ax,
 scheme='Quantiles',
 linewidth=0,
 cmap='Blues',
 alpha=0.75
)
 # Remove axis clutter
 ax.set_axis_off()
 # Set the axis title to the name of variable being plotted
 ax.set_title(col)
Display the figure
plt.show()

Skip to main content

Before we delve into the substantive interpretation of the map, let us walk through the process of creating the figure above,

which involves several subplots inside the same figure:

First (L. 2) we set the number of rows and columns we want for the grid of subplots.

The resulting object, axs , is not a single one but a grid (or array) of axis. Because of this, we can’t plot directly on

axs , but instead we need access each individual axis.

To make that step easier, we unpack the grid into a flat list (array) for the axes of each subplot with flatten (L. 4).

At this point, we set up a for loop (L. 6) to plot a map in each of the subplots.

Within the loop (L. 6-14), we extract the axis (L. 8), plot the choropleth on it (L. 10) and style the map (L. 11-14).

Display the figure (L. 16).

As we can see, there is substantial variation in how the ratings for different aspects are distributed over space. While

variables like the overall value (review_scores_value) or the communication (review_scores_communication) tend

to higher in peripheral areas, others like the location score (review_scores_location) are heavily concentrated in the

city centre.

Even though we only have seven variables, it is very hard to “mentally overlay” all of them to come up with an overall

assessment of the nature of each part of London. For bivariate correlations, a useful tool is the correlation matrix plot,

available in seaborn :

_ = sns.pairplot(abb[ratings], kind='reg', diag_kind='hist')

Skip to main content

This is helpful to consider uni and bivariate questions such as: what is the relationship between the overall (rating) and

location scores? (Positive) Are the overall ratings more correlated with location or with cleanliness? (Cleanliness) However,

sometimes, this is not enough and we are interested in more sophisticated questions that are truly multivariate and, in these

cases, the figure above cannot help us. For example, it is not straightforward to answer questions like: what are the main

characteristics of the South of London? What areas are similar to the core of the city? Are the East and West of London

similar in terms of the kind of AirBnb properties you can find in them? For these kinds of multi-dimensional questions -

involving multiple variables at the same time- we require a truly multidimensional method like statistical clustering.
Skip to main content

g p q y g

An AirBnb geodemographic classification of Inner London using K-means

A geodemographic analysis involves the classification of the areas that make up a greographical map into groups or

categories of observations that are similar within each other but different between them. The classification is carried out

using a statistical clustering algorithm that takes as input a set of attributes and returns the group (“labels” in the terminology)

each observation belongs to. Depending on the particular algorithm employed, additional parameters, such as the desired

number of clusters employed or more advanced tuning parameters (e.g. bandwith, radius, etc.), also need to be entered as

inputs. For our geodemographic classification of AirBnb ratings in Inner London, we will use one of the most popular

clustering algorithms: K-means. This technique only requires as input the observation attributes and the final number of

groups that we want it to cluster the observations into. In our case, we will use five to begin with as this will allow us to have

a closer look into each of them.

Although the underlying algorithm is not trivial, running K-means in Python is streamlined thanks to scikit-learn .

Similar to the extensive set of available algorithms in the library, its computation is a matter of two lines of code. First, we

need to specify the parameters in the KMeans method (which is part of scikit-learn ’s cluster submodule). Note that,

at this point, we do not even need to pass the data:

This sets up an object that holds all the parameters required to run the algorithm. In our case, we only passed the number of

clusters(n_clusters) and the random state, a number that ensures every run of K-Means, which remember relies on

random initialisations, is the same and thus reproducible.

To actually run the algorithm on the attributes, we need to call the fit method in kmeans5 :

The k5cls object we have just created contains several components that can be useful for an analysis. For now, we will use

the labels, which represent the different categories in which we have grouped the data. Remember, in Python, life starts at

zero, so the group labels go from zero to four. Labels can be extracted as follows:

kmeans5 = cluster.KMeans(n_clusters=5, random_state=12345)

Run the clustering algorithm
k5cls = kmeans5.fit(abb[ratings])

k5cls.labels_

Skip to main content

Each number represents a different category, so two observations with the same number belong to same group. The labels are

returned in the same order as the input attributes were passed in, which means we can append them to the original table of

data as an additional column:

Mapping the categories

To get a better understanding of the classification we have just performed, it is useful to display the categories created on a

map. For this, we will use a unique values choropleth, which will automatically assign a different color to each category:

array([0, 2, 2, 2, 1, 1, 2, 3, 0, 3, 1, 3, 0, 3, 3, 3, 2, 1, 1, 0, 0, 0,
 4, 4, 4, 4, 4, 0, 0, 4, 0, 0, 3, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1,
 2, 1, 1, 1, 2, 2, 3, 4, 0, 1, 1, 1, 1, 2, 2, 2, 0, 2, 2, 1, 3, 2,
 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 3, 3,
 3, 1, 1, 3, 1, 1, 3, 1, 1, 0, 1, 0, 3, 4, 0, 0, 3, 1, 1, 3, 0, 2,
 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 0,
 3, 0, 3, 3, 0, 1, 1, 3, 1, 3, 2, 1, 4, 3, 3, 0, 0, 4, 0, 0, 3, 3,
 3, 3, 0, 3, 3, 3, 3, 2, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2,
 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 3, 1, 3, 1, 2, 1,
 2, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 0, 2, 2, 2, 2, 4, 1, 3, 2, 1, 2,
 2, 1, 4, 2, 2, 3, 1, 0, 1, 3, 1, 1, 3, 0, 3, 2, 0, 0, 3, 0, 0, 1,
 0, 3, 3, 1, 1, 1, 3, 1, 1, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 1,
 1, 3, 3, 0, 1, 3, 0, 4, 2, 0, 3, 4, 0, 4, 2, 0, 3, 0, 4, 0, 3, 0,
 0, 1, 3, 0, 4, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 2, 0,
 2, 1, 1, 2, 1, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 0, 3, 2, 4,
 3, 3, 0, 0, 0, 3, 0, 4, 0, 3, 4, 0, 3, 4, 4, 0, 3, 0, 1, 3, 0, 3,
 0], dtype=int32)

abb['k5cls'] = k5cls.labels_

Setup figure and ax
f, ax = plt.subplots(1, figsize=(9, 9))
Plot unique values choropleth including a legend and with no boundary lines
abb.plot(
 column='k5cls', categorical=True, legend=True, linewidth=0, ax=ax
)
Remove axis
ax.set_axis_off()
Add title
plt.title('AirBnb Geodemographic classification for Inner London')
Display the map
plt.show()

Skip to main content

The map above represents the geographical distribution of the five categories created by the K-means algorithm. A quick

glance shows a strong spatial structure in the distribution of the colors: group zero (blue) is mostly found in the city centre

and barely in the periphery, while group one (green) is concentrated in the south mostly. Group four (turquoise) is an

intermediate one, while group two (brown)is much smaller, containing only a handful of observations.

Exploring the nature of the categories

Once we have a sense of where and how the categories are distributed over space, it is also useful to explore them

statistically. This will allow us to characterize them, giving us an idea of the kind of observations subsumed into each of

them. As a first step, let us find how many observations are in each category. To do that, we will make use of the groupby

operator introduced before, combined with the function size , which returns the number of elements in a subgroup:

The groupby operator groups a table (DataFrame) using the values in the column provided (k5cls) and passes them

onto the function provided aftwerards, which in this case is size . Effectively, what this does is to groupby the observations

by the categories created and count how many of them each contains. For a more visual representation of the output, a bar

plot is a good alternative:

k5sizes = abb.groupby('k5cls').size()
k5sizes

k5cls
0 56
1 104
2 98
3 72
4 23
dtype: int64

Skip to main content

As we suspected from the map, groups varying sizes, with groups one, two and three being over 70 observations each, and

four being under 25.

In order to describe the nature of each category, we can look at the values of each of the attributes we have used to create

them in the first place. Remember we used the average ratings on many aspects (cleanliness, communication of the host, etc.)

to create the classification, so we can begin by checking the average value of each. To do that in Python, we will rely on the

groupby operator which we will combine it with the function mean :

This concludes the section on geodemographics. As we have seen, the essence of this approach is to group areas based on a

purely statistical basis: where each area is located is irrelevant for the label it receives from the clustering algorithm. In many

contexts, this is not only permissible but even desirable, as the interest is to see if particular combinations of values are

distributed over space in any discernible way. However, in other context, we may be interested in created groups of

observations that follow certain spatial constraints. For that, we now turn into regionalization techniques.

_ = k5sizes.plot.bar()

Calculate the mean by group
k5means = abb.groupby('k5cls')[ratings].mean()
Show the table transposed (so it's not too wide)
k5means.T

k5cls 0 1 2 3 4

review_scores_rating 90.725593 93.727497 95.330624 92.134328 88.322160

review_scores_accuracy 9.355684 9.605591 9.717272 9.472732 9.149055

review_scores_cleanliness 9.132700 9.328059 9.478406 9.214409 8.907681

review_scores_checkin 9.510472 9.679087 9.785712 9.588242 9.413322

review_scores_communication 9.543217 9.722030 9.804255 9.627248 9.444095

review_scores_location 9.448517 9.443591 9.539375 9.546235 9.454598

review_scores_value 9.090933 9.384535 9.531206 9.220018 8.901364

Skip to main content

p , g q

Regionalization algorithms

Regionalization is the subset of clustering techniques that impose a spatial constraint on the classification. In other words, the

result of a regionalization algorithm contains areas that are spatially contiguous. Efectively, what this means is that these

techniques aggregate areas into a smaller set of larger ones, called regions. In this context then, areas are nested within

regions. Real world examples of this phenomenon includes counties within states or, in the UK, local super output areas

(LSOAs) into middle super output areas (MSOAs). The difference between those examples and the output of a

regionalization algorithm is that while the former are aggregated based on administrative principles, the latter follows a

statistical technique that, very much the same as in the standard statistical clustering, groups together areas that are similar on

the basis of a set of attributes. Only that now, such statistical clustering is spatially constrained.

As in the non-spatial case, there are many different algorithms to perform regionalization, and they all differ on details

relating to the way they measure (dis)similarity, the process to regionalize, etc. However, same as above too, they all share a

few common aspects. In particular, they all take a set of input attributes and a representation of space in the form of a binary

spatial weights matrix. Depending on the algorithm, they also require the desired number of output regions into which the

areas are aggregated.

To illustrate these concepts, we will run a regionalization algorithm on the AirBnb data we have been using. In this case, the

goal will be to re-delineate the boundary lines of the Inner London boroughs following a rationale based on the different

average ratings on AirBnb proeperties, instead of the administrative reasons behind the existing boundary lines. In this way,

the resulting regions will represent a consistent set of areas that are similar with each other in terms of the ratings received.

Defining space formally

Very much in the same way as with ESDA techniques, regionalization methods require a formal representation of space that

is statistics-friendly. In practice, this means that we will need to create a spatial weights matrix for the areas to be aggregated.

Technically speaking, this is the same process as we have seen before, thanks to PySAL . The difference in this case is that

we did not begin with a shapefile, but with a GeoJSON. Fortunately, PySAL supports the construction of spatial weights

matrices “on-the-fly”, that is from a table. This is a one-liner:

Creating regions from areas

At this point, we have all the pieces needed to run a regionalization algorithm. For this example, we will use a spatially-

constrained version of the agglomerative algorithm. This is a similar approach to that used above (the inner-workings of the

algorithm are different however) with the difference that, in this case, observations can only be labelled in the same group if

they are spatial neighbors, as defined by our spatial weights matrix w . The way to interact with the algorithm is very similar

to that above. We first set the parameters:

w = weights.Queen.from_dataframe(abb)

Skip to main content

And we can run the algorithm by calling fit :

And then we append the labels to the table:

Mapping the resulting regions

At this point, the column sagg13cls is no different than k5cls : a categorical variable that can be mapped into a unique

values choropleth. In fact the following code snippett is exactly the same as before, only replacing the name of the variable to

be mapped and the title:

sagg13 = cluster.AgglomerativeClustering(n_clusters=13, connectivity=w.sparse)
sagg13

AgglomerativeClustering(connectivity=<353x353 sparse matrix of type '<class 'numpy.float64'>'
 with 1978 stored elements in Compressed Sparse Row format>,
 n_clusters=13)

Run the clustering algorithm
sagg13cls = sagg13.fit(abb[ratings])

abb['sagg13cls'] = sagg13cls.labels_

Setup figure and ax
f, ax = plt.subplots(1, figsize=(9, 9))
Plot unique values choropleth including a legend and with no boundary lines
abb.plot(
 column='sagg13cls', categorical=True, legend=True, linewidth=0, ax=ax
)
Remove axis
ax.set_axis_off()
Add title
plt.title('AirBnb-based boroughs for Inner London')
Display the map
plt.show()

Skip to main content

Comparing organic and administrative delineations

The map above gives a very clear impression of the boundary delineation of the algorithm. However, it is still based on the

small area polygons. To create the new boroughs “properly”, we need to dissolve all the polygons in each category into a

single one. This is a standard GIS operation that is supported by geopandas and that can be easily actioned with the same

groupby operator we used before. The only additional complication is that we need to wrap it into a separate function to be

able to pass it on to groupby . We first the define the function dissolve :

The boundaries for the AirBnb boroughs can then be obtained as follows:

Which we can plot:

def dissolve(gs):
 '''
 Take a series of polygons and dissolve them into a single one

 Arguments

 gs : GeoSeries
 Sequence of polygons to be dissolved
 Returns

 dissolved : Polygon
 Single polygon containing all the polygons in `gs`
 '''
 return gs.unary_union

Dissolve the polygons based on `sagg13cls`
abb_boroughs = gpd.GeoSeries(
 abb.groupby(abb['sagg13cls']).apply(dissolve),
 crs=abb.crs
)

Skip to main content

The delineation above provides a view into the geography of AirBnb properties. Each region delineated contains houses that,

according to our regionalisation algorithm, are more similar with each other than those in the neighboring areas. Now let’s

compare this geography that we have organically drawn from our data with that of the official set of administrative

boundaries. For example, with the London boroughs.

Remember we read these at the beginning of the notebook:

Setup figure and ax
f, ax = plt.subplots(1, figsize=(6, 6))
Plot boundary lines
abb_boroughs.plot(
 ax=ax,
 linewidth=0.5,
 facecolor='white',
 edgecolor='k'
)
Remove axis
ax.set_axis_off()
Add title
plt.title('AirBnb-based boroughs for Inner London');

boroughs.head()

Skip to main content

And displayed in a similar way as with the newly created ones:

NAME GSS_CODE HECTARES NONLD_AREA ONS_INNER SUB_2009 SUB_2006 g

0 Lambeth E09000022 2724.940 43.927 T None None

PO
(
5

51

1 Southwark E09000028 2991.340 105.139 T None None

PO
(
5

51

2 Lewisham E09000023 3531.706 16.795 T None None

PO
(
5

51

3 Greenwich E09000011 5044.190 310.785 F None None

MULTIPO
((

5
-0.02

4 Wandsworth E09000032 3522.022 95.600 T None None

PO
(
5

51

Setup figure and ax
f, ax = plt.subplots(1, figsize=(6, 6))
Plot boundary lines
boroughs.plot(
 ax=ax,
 linewidth=0.5,
 edgecolor='k',
 facecolor='white'
)
Remove axis
ax.set_axis_off()
Add title
plt.title('Administrative boroughs for Inner London');

Skip to main content

In order to more easily compare the administrative and the “regionalized” boundary lines, we can overlay them:

 Show code cell source

Looking at the figure, there are several differences between the two maps. The clearest one is that, while the administrative

boundaries have a very balanced size (with the exception of the city of London), the regions created with the spatial

agglomerative algorithm are very different in terms of size between each other. This is a consequence of both the nature of

the underlying data and the algorithm itself. Substantively, this shows how, based on AirBnb, we can observe large areas that

are similar and hence are grouped into the same region, while there also exist pockets with characteristics different enough to

be assigned into a different region.

Do-It-Yourself Skip to main content

Task I: NYC Geodemographics

We are going to try to get at the (geographic) essence of New York City. For that, we will rely on the same set up Census

tracts for New York City we used a few blocks ago. Once you have the nyc object loaded, create a geodemographic

classification using the following variables:

european : Total Population White

asian : Total Population Asian American

american : Total Population American Indian

african : Total Population African American

hispanic : Total Population Hispanic

mixed : Total Population Mixed race

pacific : Total Population Pacific Islander

For this, make sure you standardise the table by the size of each tract. That is, compute a column with the total population as

the sum of all the ethnic groups and divide each of them by that column. This way, the values will range between 0 (no

population of a given ethnic group) and 1 (all the population in the tract is of that group).

Once this is ready, get to work with the following tasks:

1. Pick a number of clusters (e.g. 10)

2. Run K-Means for that number of clusters

3. Plot the different clusters on a map

4. Analyse the results:

What do you find?

What are the main characteristics of each cluster?

How are clusters distributed geographically?

Can you identify some groups concentrated on particular areas (e.g. China Town, Little Italy)?

Task II: Regionalisation of Dar Es Salaam

For this task we will travel to Tanzania’s Dar Es Salaam. We are using a dataset assembled to describe the built environment

of the city centre. Let’s load up the dataset before anything:

import geopandas
import contextily

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#diy-e-tracts

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Geographically, this is what we are looking at:

 Show code cell source

We can inspect the table:

Read the file in
db = geopandas.read_file(
 "http://darribas.org/gds_course/content/data/dar_es_salaam.geojson"
)

Alternative

br = geopandas.read_file("dar_es_salaam.geojson")

db.info()

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/data/dar_es_salaam.geojson

Two main aspects of the built environment are considered: the street network and buildings. To capture those, the following

variables are calculated at for the H3 hexagonal grid system, zoom level 8:

Building density: number of buildings per hexagon

Building coverage: proportion of the hexagon covered by buildings

Street length: total length of streets within the hexagon

Street linearity: a measure of how regular the street network is

With these at hand, your task is the following:

For that, you can follow these suggestions:

Create a spatial weights matrix to capture spatial relationships between hexagons

Set up a regionalisation algorithm with a given number of clusters (e.g. seven)

Generate a geography that contains only the boundaries of each region and visualise it (ideally with a satellite image as

basemap for context)

Rinse and repeat with several combinations of variables and number of clusters

Pick your best. Why have you selected it? What does it show? What are the main groups of areas based on the built

environment?

Concepts
In this block, we focus on a particular type of geometry: points. As we will see, points can represent a very particular type of

spatial entity. We explore how that is the case and what are its implications, and then wrap up with a particular machine

learning technique that allows us to identify clusters of points in space.

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 1291 entries, 0 to 1290
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 index 1291 non-null object
 1 id 1291 non-null object
 2 street_length 1291 non-null float64
 3 street_linearity 1291 non-null float64
 4 building_density 1291 non-null float64
 5 building_coverage 1291 non-null float64
 6 geometry 1291 non-null geometry
dtypes: float64(4), geometry(1), object(2)
memory usage: 70.7+ KB

Develop a regionalisation that partitions Dar Es Salaam based on its built environment

Skip to main content

The slides used in the clip are available at:

[HTML]

[PDF]

Point patterns

Collections of points referencing geographical locations are sometimes called point patterns. In this section, we talk about

what’s special about point patterns and how they differ from other collections of geographical features such as polygons.

Once you have gone over the clip above, watch the one below, featuring Luc Anselin from the University of Chicago

providing an overview of point patterns. This will provide a wider perspective on the particular nature of points, but also on

their relevance for many disciplines, from ecology to economic geography..

If you want to delve deeper into point patterns, watch the video on the expandable below, which features Luc Anselin

delivering a longer (and slightly more advanced) lecture on point patterns.

 Show code cell outputs

Visualisating Points

Once we have a better sense of what makes points special, we turn to visualising point patterns. Here we cover three main

strategies: one to one mapping, aggregation, and smoothing.

0:00 / 0:00

Point Pattern Analysis Concepts

Slides

SlidesSkip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_H_i.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_H_i.pdf
https://www.youtube.com/watch?v=BN94XXT6Io4

The slides used in the clip are available at:

[HTML]

[PDF]

We will put all of these ideas to visualising points into practice on the Hands-on section.

Clustering Points

As we have seen in this course, “cluster” is a hard to define term. In Block G we used it as the outcome of an unsupervised

learning algorithm. In this context, we will use the following definition:

Spatial/Geographic clustering has a wide literature going back to spatial mathematics and statistics and, more recently,

machine learning. For this section, we will cover one algorithm from the latter discipline which has become very popular in

the geographic context in the last few years: Density-Based Spatial Clustering of Applications with Noise, or DBSCAN

ester1996density.

Wath the clip below to get the intuition of the algorithm first:

Let’s complement and unpack the clip above in the context of this course. The video does a very good job at explaining how

the algorithm works, and what general benefits that entails. Here are two additional advantages that are not picked up in the

0:00 / 0:00

Concentrations/agglomerations of points over space, significantly more so than in the rest of the space considered

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/slides/block_H_ii.html
file:///home/jovyan/work/code/gds_course/website/_build/html/slides/pdf/block_H_ii.pdf
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bH/lab_H
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/concepts_G

clip:

1. It is not necessarily spatial. In fact, the original design was for the area of “data mining” and “knowledge discovery in

databases”, which historically does not work with spatial data. Instead, think of purchase histories of consumers, or

warehouse stocks: DBSCAN was designed to pick up patterns of similar behaviour in those contexts. Note also that this

means you can use DBSCAN not only with two dimensions (e.g. longitude and latitude), but with many more (e.g.

product variety) and its mechanics will work in the same way.

2. Fast and scalable. For similar reasons, DBSCAN is very fast and can be run in relatively large databases without

problem. This contrasts with much of the traditional point pattern methods, that rely heavily on simulation and thus are

trickier to scale feasibly. This is one of the reasons why DBSCAN has been widely adopted in Geographic Data Science:

it is relatively straightforward to apply and will run fast, even on large datasets, meaning you can iterate over ideas

quickly to learn more about your data.

DBSCAN also has a few drawbacks when compared to some of the techniques we have seen earlier in this course. Here are

two prominent ones:

1. It is not based on a probabilistic model. Unlike the LISAs, for example, there is no underlying model that helps us

characterise the pattern the algorithms returns. There is no “null hypothesis” to reject, no inferential model and thus no

statistical significance. In some cases, this is an important drawback if we want to ensure what we are observing (and the

algorithm is picking up) is not a random pattern.

2. Agnostic about the underlying process. Because there is no inferential model and the algorithm imposes very little

prior structure to identify clusters, it is also hard to learn anything about the underlying process that gave rise to the

pattern picked up by the algorithm. This is by no means a unique feature of DBSCAN, but one that is always good to

keep in mind as we are moving from exploratory analysis to more confirmatory approaches.

Further readings

If this section was of your interest, there is plenty more you can read and explore. A good “next step” is the Points chapter on

the GDS book (in progress) reyABwolf.

Hands-on

Points

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#concepts-f-local

This is an adapted version, with a bit less content and detail, of the chapter on points by Rey, Arribas-Bel and Wolf

(in progress) reyABwolf. Check out the full chapter, available for free at:

Points are spatial entities that can be understood in two fundamentally different ways. On the one hand, points can be seen as

fixed objects in space, which is to say their location is taken as given (exogenous). In this case, analysis of points is very

similar to that of other types of spatial data such as polygons and lines. On the other hand, points can be seen as the

occurence of an event that could theoretically take place anywhere but only manifests in certain locations. This is the

approach we will adopt in the rest of the notebook.

When points are seen as events that could take place in several locations but only happen in a few of them, a collection of

such events is called a point pattern. In this case, the location of points is one of the key aspects of interest for analysis. A

good example of a point pattern is crime events in a city: they could technically happen in many locations but we usually find

crimes are committed only in a handful of them. Point patterns can be marked, if more attributes are provided with the

location, or unmarked, if only the coordinates of where the event occured are provided. Continuing the crime example, an

unmarked pattern would result if only the location where crimes were committed was used for analysis, while we would be

speaking of a marked point pattern if other attributes, such as the type of crime, the extent of the damage, etc. was provided

with the location.

Point pattern analysis is thus concerned with the description, statistical characerization, and modeling of point patterns,

focusing specially on the generating process that gives rise and explains the observed data. What’s the nature of the

distribution of points? Is there any structure we can statistically discern in the way locations are arranged over space? Why

do events occur in those places and not in others? These are all questions that point pattern analysis is concerned with.

This notebook aims to be a gentle introduction to working with point patterns in Python. As such, it covers how to read,

process and transform point data, as well as several common ways to visualize point patterns.

Important

https://geographicdata.science/book/notebooks/08_point_pattern_analysis.html

import numpy as np
import pandas as pd
import geopandas as gpd
import contextily as cx
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from ipywidgets import interact, fixed

Skip to main content

https://geographicdata.science/book/notebooks/08_point_pattern_analysis.html

Data

Photographs

We are going to dip our toes in the lake of point data by looking at a sample of geo-referenced photographs in Tokyo. The

dataset comes from the GDS Book reyABwolf and contains photographs voluntarily uploaded to the Flickr service.

Let’s read the dataset first:

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Administrative areas

We will later use administrative areas for aggregation. Let’s load them upfront first. These are provided with the course and

available online:

/tmp/ipykernel_14977/1645228579.py:3: UserWarning: Shapely 2.0 is installed, but because PyGEOS

import os
os.environ['USE_PYGEOS'] = '0'
import geopandas

In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS
 import geopandas as gpd

Read remote file
tokyo = pd.read_csv(
 "https://geographicdata.science/book/_downloads/7fb86b605af15b3c9cbd9bfcbead23e9/tokyo_cle
)

Alternative

tokyo = pd.read_csv("tokyo_clean.csv")

Skip to main content

https://geographicdata.science/book/_downloads/7fb86b605af15b3c9cbd9bfcbead23e9/tokyo_clean.csv

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on  this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

The final bit we need to get out of the way is attaching the administrative area code where a photo is located to each area.

This can be done with a GIS operation called “spatial join”.

 Show code cell source

Now we are good to go!

Visualization of a Point Pattern

We will spend the rest of this notebook learning different ways to visualize a point pattern. In particular, we will consider to

main strategies: one relies on aggregating the points into polygons, while the second one is based on creating continuous

surfaces using kernel density estimation.

One-to-one

The first approach we review here is the one-to-one approach, where we place a dot on the screen for every point to visualise.

In Python, one way to do this is with the scatter method in the Pandas visualisation layer:

Read the file in
areas = gpd.read_file(
 "https://darribas.org/gds_course/content/data/tokyo_admin_boundaries.geojson"
)

Alternative

areas = gpd.read_file("tokyo_admin_boundaries.geojson")

Plot a dot for every image
tokyo.plot.scatter("longitude", "latitude")

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/_downloads/9a7c837a130b00312df50cb2339d72c9/tokyo_admin_boundaries.geojson

However this does not give us much geographical context and, since there are many points, it is hard to see any pattern in

areas of high density. Let’s tweak the dot display and add a basemap:

<Axes: xlabel='longitude', ylabel='latitude'>

Plot photographs with smaller, more translucent dots
ax = tokyo.plot.scatter(
 "longitude",
 "latitude",
 s=0.25,
 c="xkcd:bright yellow",
 alpha=0.5,
 figsize=(9, 9)
)
remove axis
ax.set_axis_off()
Add dark basemap
cx.add_basemap(
 ax,
 crs="EPSG:4326",
 source=cx.providers.CartoDB.DarkMatter
)

Skip to main content

Points meet polygons

The approach presented above works until a certain number of points to plot; tweaking dot transparency and size only gets us

so far and, at some point, we need to shift the focus. Having learned about visualizing lattice (polygon) data, an option is to

“turn” points into polygons and apply techniques like choropleth mapping to visualize their spatial distribution. To do that,

we will overlay a polygon layer on top of the point pattern, join the points to the polygons by assigning to each point the

polygon where they fall into, and create a choropleth of the counts by polygon.

This approach is intuitive but of course raises the following question: what polygons do we use to aggregate the points?

Ideally, we want a boundary delineation that matches as closely as possible the point generating process and partitions the

space into areas with a similar internal intensity of points. However, that is usually not the case, no less because one of the

main reasons we typically want to visualize the point pattern is to learn about such generating process, so we would typically

not know a priori whether a set of polygons match it. If we cannot count on the ideal set of polygons to begin with, we can

adopt two more realistic approaches: using a set of pre-existing irregular areas or create a artificial set of regular polygons.

Let’s explore both.

Irregular lattices

To exemplify this approach, we will use the administrative areas we have loaded above. Let’s add them to the figure above to

get better context (unfold the code if you are interested in seeing exactly how we do this):
Skip to main content

 Show code cell source

Now we need to know how many photographs each are contains. Our photograph table already contains the area ID, so all we

need to do here is counting by area and attaching the count to the areas table. We rely here on the groupby operator

which takes all the photos in the table and “groups” them “by” their administrative ID. Once grouped, we apply the method

size , which counts how many elements each group has and returns a column indexed on the LSOA code with all the counts

as its values. We end by assigning the counts to a newly created column in the areas table.

The lines above have created a new column in our areas table that contains the number of photos that have been taken

within each of the polygons in the table.

Create counts
photos_by_area = tokyo.groupby("admin_area").size()
Assign counts into a table of its own
and joins it to the areas table
areas = areas.join(
 pd.DataFrame({"photo_count": photos_by_area}),
 on="GID_2"
)

Skip to main content

w t eac o t e po ygo s t e tab e.

At this point, we are ready to map the counts. Technically speaking, this is a choropleth just as we have seen many times

before:

Set up figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Plot the equal interval choropleth and add a legend
areas.plot(
 column='photo_count',
 scheme='quantiles',
 ax=ax,
 legend=True,
 legend_kwds={"loc": 4}
)
Remove the axes
ax.set_axis_off()
Set the title
ax.set_title("Quantile map of photo counts by administrative boundary")
Add dark basemap
cx.add_basemap(
 ax,
 crs="EPSG:4326",
 source=cx.providers.CartoDB.DarkMatterNoLabels
)
Draw map
plt.show()

Skip to main content

The map above clearly shows a concentration of photos in the centre of Tokyo. However, it is important to remember that the

map is showing raw counts of tweets. In the case to photos, as with many other phenomena, it is crucial to keep in mind the

“container geography” (see Block D for a refresher of the term). In this case, different administrative areas have different

sizes. Everything else equal, a larger polygon may contain more photos, simply because it covers a larger space. To obtain a

more accurate picture of the intensity of photos by area, what we would like to see is a map of the density of photos, not of

raw counts. To do this, we can divide the count per polygon by the area of the polygon.

Let’s first calculate the area in Sq. metres of each administrative delineation:

And we can add the photo density as well:

With the density at hand, creating the new choropleth is similar as above (check the code in the expandable):

areas["area_sqm"] = areas.to_crs(epsg=2459).area * 1e-6

areas["photo_density"] = areas["photo_count"] / areas["area_sqm"]

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/concepts_D

 Show code cell source

The pattern in the raw counts is similar to that of density, but we can see how some peripheral, large areas are “downgraded”

when correcting for their size, while some smaller polygons in the centre display a higher value.

Regular lattices: hex-binning

Sometimes we either do not have any polygon layer to use or the ones we have are not particularly well suited to aggregate

points into them. In these cases, a sensible alternative is to create an artificial topology of polygons that we can use to

aggregate points. There are several ways to do this but the most common one is to create a grid of hexagons. This provides a

regular topology (every polygon is of the same size and shape) that, unlike circles, cleanly exhausts all the space without

overlaps and has more edges than squares, which alleviates edge problems.

Python has a simplified way to create this hexagon layer and aggregate points into it in one shot thanks to the method

hexbin , which is available in every axis object (e.g. ax). Let us first see how you could create a map of the hexagon layer

alone: Skip to main content

See how all it takes is to set up the figure and call hexbin directly using the set of coordinate columns

(tokyo["longitude"] and tokyo["latitude"]). Additional arguments we include is the number of hexagons by axis

(gridsize , 50 for a 50 by 50 layer), and the transparency we want (80%). Additionally, we include a colorbar to get a sense

of how counts are mapped to colors. Note that we need to pass the name of the object that includes the hexbin (hb in our

case), but keep in mind this is optional, you do not need to always create one.

Setup figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
Add hexagon layer that displays count of points in each polygon
hb = ax.hexbin(
 tokyo["longitude"],
 tokyo["latitude"],
 gridsize=50,
)
Add a colorbar (optional)
plt.colorbar(hb)

<matplotlib.colorbar.Colorbar at 0x7fc4590dec50>

Skip to main content

Once we know the basics, we can dress it up a bit more for better results (expand to see code):

 Show code cell source

Kernel Density Estimation

Using a hexagonal binning can be a quick solution when we do not have a good polygon layer to overlay the points directly

and some of its properties, such as the equal size of each polygon, can help alleviate some of the problems with a “bad”

irregular topology (one that does not fit the underlying point generating process). However, it does not get around the issue of

the modifiable areal unit problem (M.A.U.P., see Block D: at the end of the day, we are still imposing arbitrary boundary

lines and aggregating based on them, so the possibility of mismatch with the underlying distribution of the point pattern is

very real.
Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bD/concepts_D

One way to work around this problem is to avoid aggregating into another geography altogether. Instead, we can aim at

estimating the continuous observed probability distribution. The most commonly used method to do this is the so called

kernel density estimate (KDE). The idea behind KDEs is to count the number of points in a continious way. Instead of using

discrete counting, where you include a point in the count if it is inside a certain boundary and ignore it otherwise, KDEs use

functions (kernels) that include points but give different weights to each one depending of how far of the location where we

are counting the point is.

The actual algorithm to estimate a kernel density is not trivial but its application in Python is rather simplified by the use of

Seaborn. KDE’s however are fairly computationally intensive. When you have a large point pattern like we do in the tokyo

example (10,000 points), its computation can take a bit long. To get around this issue, we create a random subset, which

retains the overall structure of the pattern, but with much fewer points. Let’s take a subset of 1,000 random points from our

original table:

Note we need to specify the size of the resulting subset (1,000), and we also add a value for random_state ; this ensures

that the sample is always the same and results are thus reproducible.

Same as above, let us first see how to create a quick KDE. For this we rely on Seaborn’s kdeplot :

Take a random subset of 1,000 rows from `tokyo`
tokyo_sub = tokyo.sample(1000, random_state=12345)

sns.kdeplot(
 x="longitude",
 y="latitude",
 data=tokyo_sub,
 n_levels=50,
 fill=True,
 cmap='BuPu'
);

Skip to main content

Seaborn greatly streamlines the process and boils it down to a single line. The method sns.kdeplot (which we can also

use to create a KDE of a single variable) takes the X and Y coordinate of the points as the only compulsory attributes. In

addition, we specify the number of levels we want the color gradient to have (n_levels), whether we want to color the

space in between each level (share , yes), and the colormap of choice.

Once we know how the basic logic works, we can insert it into the usual mapping machinery to create a more complete plot.

The main difference here is that we now have to tell sns.kdeplot where we want the surface to be added (ax in this

case). Toggle the expandable to find out the code that produces the figure below:

 Show code cell source

Skip to main content

Clusters of points

In this final section, we will learn a method to identify clusters of points, based on their density across space. To do this, we

will use the widely used DBSCAN algorithm. For this method, a cluster is a concentration of at least m points, each of them

within a distance of r of at least another point in the cluster. Points in the dataset are then divided into three categories:

Noise, for those points outside a cluster.

Cores, for those points inside a cluster whith at least m points in the cluster within distance r .

Borders for points inside a cluster with less than m other points in the cluster within distance r .

Both m and r need to be prespecified by the user before running DBSCAN . This is a critical point, as their value can

influence significantly the final result. Before exploring this in greater depth, let us get a first run at computing DBSCAN in

Python. Skip to main content

Basics

The heavy lifting is done by the method DBSCAN , part of the excellent machine learning library scikit-learn . Running

the algorithm is similar to how we ran K-Means when clustering. We first set up the details:

We decide to consider a cluster photos with more than 50 photos within 100 metres from them, hence we set the two

parameters accordingly. Once ready, we “fit” it to our data, but note that we first need to express the longitude and latitude of

our points in metres (see code for that on the side cell).

Once fit, we can recover the labels:

And the list of points classified as cores:

The labels_ object always has the same length as the number of points used to run DBSCAN . Each value represents the

index of the cluster a point belongs to. If the point is classified as noise, it receives a -1. Above, we can see that the first five

points are effectively not part of any cluster. To make thinks easier later on, let us turn the labels into a Series object that

we can index in the same way as our collection of points:

Now we already have the clusters, we can proceed to visualize them. There are many ways in which this can be done. We

will start just by coloring points in a cluster in red and noise in grey:

Set up algorithm
algo = DBSCAN(eps=100, min_samples=50)

algo.fit(tokyo[["X_metres", "Y_metres"]])

algo.labels_

array([-1, -1, -1, ..., 8, -1, -1])

Print only the first five values
algo.core_sample_indices_[:5]

array([12, 25, 28, 46, 63])

lbls = pd.Series(algo.labels_, index=tokyo.index)

� DBSCAN

DBSCAN(eps=100, min_samples=50)

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/lab_G

This is a first good pass. The algorithm is able to identify a few clusters with high density of photos. However, as we

mentioned when discussing DBSCAN, this is all contingent on the parameters we arbitrarily set. Depending on the maximum

radious (eps) we set, we will pick one type of cluster or another: a higher (lower) radious will translate in less (more) local

Setup figure and axis
f, ax = plt.subplots(1, figsize=(6, 6))
Assign labels to tokyo table dynamically and
subset points that are not part of any cluster (noise)
noise = tokyo.assign(
 lbls=lbls
).query("lbls == -1")
Plot noise in grey
ax.scatter(
 noise["X_metres"],
 noise["Y_metres"],
 c='grey',
 s=5,
 linewidth=0
)
Plot all points that are not noise in red
NOTE how this is done through some fancy indexing, where
we take the index of all points (tw) and substract from
it the index of those that are noise
ax.scatter(
 tokyo.loc[tokyo.index.difference(noise.index), "X_metres"],
 tokyo.loc[tokyo.index.difference(noise.index), "Y_metres"],
 c="red",
 linewidth=0
)
Display the figure
plt.show()

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#concepts-h-dbscan

ad ous (eps) we set, we w p c o e type o c uste o a ot e : a g e (owe) ad ous w t a s ate ess (o e) oca

clusters. Equally, the minimum number of points required for a cluster (min_samples) will affect the implicit size of the

cluster. Both parameters need to be set before running the algorithm, so our decision will affect the final outcome quite

significantly.

For an illustration of this, let’s run through a case with very different parameter values. For example, let’s pick a larger

radious (e.g. 500m) and a smaller number of points (e.g. 10):

And let’s now visualise the result (toggle the expandable to see the code):

 Show code cell source

The output is now very different, isn’t it? This exemplifies how different parameters can give rise to substantially different

outcomes, even if the same data and algorithm are applied.

Advanced plotting

Set up algorithm
algo = DBSCAN(eps=500, min_samples=10)
Fit to Tokyo projected points
algo.fit(tokyo[["X_metres", "Y_metres"]])
Store labels
lbls = pd.Series(algo.labels_, index=tokyo.index)

Skip to main content

Please keep in mind this final section of the tutorial is OPTIONAL, so do not feel forced to complete it. This will

not be covered in the assignment and you will still be able to get a good mark without completing it (also, including

any of the following in the assignment does NOT guarantee a better mark).

As we have seen, the choice of parameters plays a crucial role in the number, shape and type of clusters founds in a dataset.

To allow an easier exploration of these effects, in this section we will turn the computation and visualization of DBSCAN

outputs into a single function. This in turn will allow us to build an interactive tool later on.

Below is a function that accomplishes just that:

The function takes the following three arguments:

1. db : a (Geo)DataFrame containing the points on which we will try to find the clusters.

2. eps : a number (maybe with decimals, hence the float label in the documentation of the function) specifying the

maximum distance to look for neighbors that will be part of a cluster.

3. min_samples : a count of the minimum number of points required to form a cluster.

Warning⚠

def clusters(db, eps, min_samples):
 '''
 Compute and visualize DBSCAN clusters
 ...

 Arguments

 db : (Geo)DataFrame
 Table with at least columns `X` and `Y` for point coordinates
 eps : float
 Maximum radious to search for points within a cluster
 min_samples : int
 Minimum number of points in a cluster
 '''
 algo = DBSCAN(eps=eps, min_samples=min_samples)
 algo.fit(db[['X_metres', 'Y_metres']])
 lbls = pd.Series(algo.labels_, index=db.index)

 f, ax = plt.subplots(1, figsize=(6, 6))
 noise = db.loc[lbls==-1, ['X_metres', 'Y_metres']]
 ax.scatter(noise['X_metres'], noise['Y_metres'], c='grey', s=5, linewidth=0)
 ax.scatter(
 db.loc[db.index.difference(noise.index), 'X_metres'],
 db.loc[db.index.difference(noise.index), 'Y_metres'],
 c='red',
 linewidth=0
)
 return plt.show()

Skip to main content

Let us see how the function can be used. For example, let us replicate the plot above, with a minimum of 10 points and a

maximum radious of 500 metres:

Voila! With just one line of code, we can create a map of DBSCAN clusters. How cool is that?

However, this could be even more interesting if we didn’t have to write each time the parameters we want to explore. To

change that, we can create a quick interactive tool that will allow us to modify both parameters with sliders. To do this, we

will use the library ipywidgets . Let us first do it and then we will analyse it bit by bit:

Phew! That is cool, isn’t it? Once passed the first excitement, let us have a look at how we built it, and how you can modify it

further on. A few points on this:

First, interact is a method that allows us to pass an arbitrary function (like clusters) and turn it into an interactive

widget where we modify the values of its parameters through sliders, drop-down menus, etc.

clusters(tokyo, 500, 10)

interact(
 clusters, # Method to make interactive
 db=fixed(tokyo), # Data to pass on db (does not change)
 eps=(50, 500, 50), # Range start/end/step of eps
 min_samples=(50, 300, 50) # Range start/end/step of min_samples
);

Skip to main content

https://ipywidgets.readthedocs.io/

What we need to pass to interact is the name of the function we would like to make interactive (clusters in this

case), and all the parameters it will take.

Since in this case we do not wish to modify the dataset that is used, we pass tokyo as the db argument in clusters

and fixate it by passing it first to the fixed method.

Then both the radious eps and the minimum cluster size min_samples are passed. In this case, we do want to allow

interactivity, so we do not use fixed . Instead, we pass a tuple that specifies the range and the step of the values we will

allow to be used.

In the case of eps , we use (50, 500, 50) , which means we want r to go from 50 to 500, in jumps of 50 units at a

time. Since these are specified in metres, we are saying we want the range to go from 50 to 500 metres in increments of

50 metres.

In the case of min_samples , we take a similar approach and say we want the minimum number of points to go from 50

to 300, in steps of 50 points at a time.

The above results in a little interactive tool that allows us to play easily and quickly with different values for the parameters

and to explore how they affect the final outcome.

Do-It-Yourself

Task I: AirBnb distribution in Beijing

In this task, you will explore patterns in the distribution of the location of AirBnb properties in Beijing. For that, we will use

data from the same provider as we did for the clustering block: Inside AirBnb. We are going to read in a file with the

locations of the properties available as of August 15th. 2019:

import pandas, geopandas, contextily

/tmp/ipykernel_13356/1400290490.py:1: UserWarning: Shapely 2.0 is installed, but because PyGEOS

import os
os.environ['USE_PYGEOS'] = '0'
import geopandas

In a future release, GeoPandas will switch to using Shapely by default. If you are using PyGEOS
 import pandas, geopandas, contextily

url = (
 "http://data.insideairbnb.com/china/beijing/beijing/"
 "2023-03-29/data/listings.csv.gz"
)
url

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/bG/lab_G
http://insideairbnb.com/

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

This gives us a table with the following information:

'http://data.insideairbnb.com/china/beijing/beijing/2023-03-29/data/listings.csv.gz'

abb = pandas.read_csv(url)

Alternative

abb = pandas.read_csv("listings.csv")

abb = pandas.read_csv("../data/web_cache/abb_listings.csv.zip")

abb.info()

Skip to main content

http://data.insideairbnb.com/china/beijing/beijing/2019-08-15/visualisations/listings.csv
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure

Also, for an ancillary geography, we will use the neighbourhoods provided by the same source:

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21448 entries, 0 to 21447
Data columns (total 16 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 id 21448 non-null int64
 1 name 21448 non-null object
 2 host_id 21448 non-null int64
 3 host_name 21428 non-null object
 4 neighbourhood_group 0 non-null float64
 5 neighbourhood 21448 non-null object
 6 latitude 21448 non-null float64
 7 longitude 21448 non-null float64
 8 room_type 21448 non-null object
 9 price 21448 non-null int64
 10 minimum_nights 21448 non-null int64
 11 number_of_reviews 21448 non-null int64
 12 last_review 12394 non-null object
 13 reviews_per_month 12394 non-null float64
 14 calculated_host_listings_count 21448 non-null int64
 15 availability_365 21448 non-null int64
dtypes: float64(4), int64(7), object(5)
memory usage: 2.6+ MB

url = (
 "http://data.insideairbnb.com/china/beijing/beijing/"
 "2023-03-29/visualisations/neighbourhoods.geojson"
)
url

'http://data.insideairbnb.com/china/beijing/beijing/2023-03-29/visualisations/neighbourhoods.ge

neis = geopandas.read_file(url)

Alternative

neis = geopandas.read_file("neighbourhoods.geojson")

Skip to main content

http://data.insideairbnb.com/china/beijing/beijing/2019-08-15/visualisations/neighbourhoods.geojson

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

With these at hand, get to work with the following challenges:

Create a Hex binning map of the property locations

Compute and display a kernel density estimate (KDE) of the distribution of the properties

Using the neighbourhood layer:

Obtain a count of property by neighbourhood (nothe the neighbourhood name is present in the property table and you

can connect the two tables through that)

Create a raw count choropleth

Create a choropleth of the density of properties by polygon

Task II: Clusters of Indian cities

For this one, we are going to use a dataset on the location of populated places in India provided by http://geojson.xyz .

The original table covers the entire world so, to get it ready for you to work on it, we need to prepare it:

neis = geopandas.read_file("../data/web_cache/abb_neis.gpkg")

neis.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 neighbourhood 16 non-null object
 1 neighbourhood_group 0 non-null object
 2 geometry 16 non-null geometry
dtypes: geometry(1), object(2)
memory usage: 512.0+ bytes

url = (
 "https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/"
 "ne_50m_populated_places_simple.geojson"
)
url

'https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_50m_populated_places_simple.geojso

Skip to main content

file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure

Let’s read the file in and keep only places from India:

Instead of reading the file directly off the web, it is possible to download it manually, store it on your computer, and

read it locally. To do that, you can follow these steps:

1. Download the file by right-clicking on this link and saving the file

2. Place the file on the same folder as the notebook where you intend to read it

3. Replace the code in the cell above by:

Note the code cell above requires internet connectivity. If you are not online but have a full copy of the GDS course in your

computer (downloaded as suggested in the infrastructure page), you can read the data with the following line of code:

By defaul, place locations come expressed in longitude and latitude. Because you will be working with distances, it makes

sense to convert the table into a system expressed in metres. For India, this can be the “Kalianpur 1975 / India zone I”

(EPSG:24378) projection.

This is what we have to work with then:

places = geopandas.read_file(url).query("adm0name == 'India'")

Alternative

places = geopandas.read_file("ne_50m_populated_places_simple.geojson")

places = geopandas.read_file(
 "../data/web_cache/places.gpkg"
).query("adm0name == 'India'")

places_m = places.to_crs(epsg=24378)

ax = places_m.plot(
 color="xkcd:bright yellow", figsize=(9, 9)
)
contextily.add_basemap(
 ax,
 crs=places_m.crs,
 source=contextily.providers.CartoDB.DarkMatter
)

Skip to main content

https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_50m_populated_places_simple.geojson
file:///home/jovyan/work/code/gds_course/website/_build/html/content/content/home.html#document-content/infrastructure
http://epsg.io/24378

With this at hand, get to work:

Use the DBSCAN algorithm to identify clusters

Start with the following parameters: at least five cities for a cluster (min_samples) and a maximum of 1,000Km (eps)

Obtain the clusters and plot them on a map. Does it pick up any interesting pattern?

Based on the results above, tweak the values of both parameters to find a cluster of southern cities, and another one of

cities in the North around New Dehli

