
Home

Contents
Overview

Overview

Infrastructure

Content

Introduction

Spatial Data

Geovisualisation

Spatial Feature Engineering (I)

Spatial Feature Engineering (II)

OpenStreetMap

Transport costs

Web mapping with CARTO

Epilogue

Datasets

Further Resources

Bibliography

GDS4AE - Geographic Data Science for Applied Economists
Dani Arribas-Bel [@darribas]

Diego Puga [@ProfDiegoPuga]

A PDF version of this course is available for download here

Contact

Dani Arribas-Bel - D.Arribas-Bel [at] liverpool.ac.uk

Senior Lecturer in Geographic Data Science

Office 508, Roxby Building,

University of Liverpool - 74 Bedford St S,

Liverpool, L69 7ZT,

United Kingdom.

Note

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/overview
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/infrastructure
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/01-Introduction
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/02-Spatial_data
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/03-Geovisualisation
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/04-Spatial_feature_eng_i
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/05-Spatial_feature_eng_ii
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/06-OpenStreetMap
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/07-Transport_costs
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/08-CARTO
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/further
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/z_bibliography
https://darribas.org/
https://twitter.com/darribas
https://diegopuga.org/
https://twitter.com/ProfDiegoPuga
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/d0630a09ef7a1acb4f456884eb623a49/gds4ae.pdf

Diego Puga - diego.puga [at] cemfi.es

Professor

CEMFI,

Casado del Alisal 5,

28014 Madrid,

Spain.

Citation

If you use materials from this resource in your own work, we recommend the following citation:

Overview
This resource provides an introduction to Geographic Data Science for applied economists using Python. It has been designed to be

delivered within 15 hours of teaching, split into ten sessions of 1.5h each.

How to follow along

GDS4AE is best followed if you can interactively tinker with its content. To do that, you will need two things:

1. A computer set up with the Jupyter Lab environment and all the required libraries (please see the Software stack part in the

Infrastructure section for instructions)

2. A local copy of the materials that you can run on your own computer (see the repository section in the Infrastructure section for

instructions)

Blocks have different components:

📖 Ahead of time…: materials to go on your own ahead of the live session

💻 Hands-on coding: content for the live session

🐾 Next steps: a few pointers to continue your journey on the area the block covers

Content

The structure of content is divided in nine blocks:

Introduction: get familiar with the computational envirionment of modern data science

Spatial Data: what do spatial data look like in Python?

Geovisualisation: make (good) data maps

Spatial Feature Engineering (Part I and Part II): augment and massage your data using Geography before you feed them into your

model

OpenStreetMap: acquire data from the largest geo-table in the world

Transport Costs: “getting there” doesn’t always cost the same

CARTO: explore publishing web maps with CARTO

@article{darribas_gds_course,
 author = {Dani Arribas-Bel and Diego Puga},
 title = {Geographic Data Science for Applied Economists},
 year = 2023,
 annote = {\href{https://darribas.org/gds4ae}}
}

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/home
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#software-stack
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/infrastructure
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#github-repo
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/infrastructure
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/01-Introduction
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/02-Spatial_data
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/03-Geovisualisation
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/04-Spatial_feature_eng_i
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/05-Spatial_feature_eng_ii
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/06-OpenStreetMap
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/07-Transport_costs
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/08-CARTO

Each block has its own section and is designed to be delivered in 1.5 hours approximately. The content of some of these blocks relies

on external resources, all of them freely available. When that is the case, enough detail is provided in the to understand how additional

material fits in.

Why Python?

There are several reasons why we have made this choice. Many of them are summarised nicely in this article by The Economist

(paywalled).:w

Data

All the datasets used in this resource is freely available. Some of them have been developed in the context of the resource, others are

borrowed from other resources. A full list of the datasets used, together with links to the original source, or to reproducible code to

generate the data used is available in the Datasets page.

License

The materials in this course are published under a Creative Commons BY-SA 4.0 license. This grants you the right to use them freely

and (re-)distribute them so long as you give credit to the original creators (see the Home page for a suggested citation) and license

derivative work under the same license.

Infrastructure
This page covers a few technical aspects on how the course is built, kept up to date, and how you can create a computational

environment to run all the code it includes.

Software stack

This course is best followed if you can not only read its content but also interact with its code and even branch out to write your own

code and play on your own. For that, you will need to have installed on your computer a series of interconnected software packages;

this is what we call a stack.

Source: XKCD

https://www.economist.com/science-and-technology/2018/07/19/python-has-brought-computer-programming-to-a-vast-new-audience
https://imgs.xkcd.com/comics/python.png
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets
https://creativecommons.org/licenses/by-sa/4.0/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/pages/home
https://xkcd.com/353/

Instructions on how to install a software stack that allows you to run the materials of this course depend on the operating system you

are using. Detailed guides are available for the main systems on the following resource, provided by the Geographic Data Science Lab:

https://gdsl-ul.github.io/soft_install/

Github repository

All the materials for this course and this website are available on the following Github repository:

https://github.com/darribas/gds4ae

If you are interested, you can download a compressed .zip file with the most up-to-date version of all the materials, including the

HTML for this website at:

https://github.com/darribas/gds4ae/archive/master.zip

Containerised backend

The course is developed, built and tested using the gds_env, a containerised platform for Geographic Data Science. You can read more

about the gds_env project at:

https://darribas.org/gds_env/

Binder

Binder is service that allows you to run scientific projects in the cloud for free. Binder can spin up “ephemeral” instances that allow you

to run code on the browser without any local setup. It is possible to run the course on Binder by clicking on the button below:

launchlaunch binderbinder

It is important to note Binder instances are ephemeral in the sense that the data and content created in a session is NOT
saved anywhere and is deleted as soon as the browser tab is closed.

Icon made by Freepik from www.flaticon.com

Warning

https://www.liverpool.ac.uk/geographic-data-science/
https://gdsl-ul.github.io/soft_install/
https://gdsl-ul.github.io/soft_install/
https://github.com/darribas/gds4ae
https://github.com/darribas/gds4ae
https://github.com/darribas/gds4ae/archive/master.zip
https://github.com/darribas/gds4ae/archive/master.zip
https://darribas.org/gds_env/
https://darribas.org/gds_env/
https://darribas.org/gds_env/
https://darribas.org/gds_env/
https://mybinder.org/
https://mybinder.org/v2/gh/darribas/gds4ae/HEAD
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/

URL

Binder is also the backend this website relies on when you click on the rocket icon () on a page with code. Remember, you can play

with the code interactively but, once you close the tab, all the changes are lost.

Introduction

Geographic Data Science

This section is adapted from Block A of the GDS Course [AB19].

Before we learn how to do Geographic Data Science or even why you would want to do it, let’s start with what it is. We will rely on two

resources:

First, in this video, Dani Arribas-Bel covers the building blocks at the First Spatial Data Science Conference, organised by CARTO

Second, Geographic Data Science, by Alex Singleton and Dani Arribas-Bel

[SAB19]

The computational stack

One of the core learning outcomes of this course is to get familiar with the modern

computational environment that is used across industry and science to “do” Data

Science. In this section, we will learn about ecosystem of concepts and tools that come

together to provide the building blocks of much computational work in data science these days.

20:50

Note

Source: The Atlantic

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_images/gds_paper.png
https://onlinelibrary.wiley.com/doi/full/10.1111/gean.12194
https://darribas.org/gds_course/content/bA/concepts_A.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://carto.com/spatial-data-conference/2017/
https://carto.com/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id40
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/

Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks, by Adam Rule et al. [RBZ+19]

GIS and Computational Notebooks, by Geoff Boeing and Dani Arribas-Bel [BAB20]

Now we are familiar with the conceptual pillars on top of which we will be working, let’s switch gears into a more practical perspective.

The following two clips cover the basics of Jupyter Lab, the frontend that glues all the pieces together, and Jupyter Notebooks, the file

format, application, and protocol that allows us to record, store and share workflows.

URL

URL

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_images/atlantic.png
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id41
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_images/ten_rules.png
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id8
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_images/gisbok.png
https://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1007007
https://gistbok.ucgis.org/bok-topics/gis-and-computational-notebooks

The clips are sourced from Block A of the GDS Course [AB19]

Jupyter Lab

Jupyter Notebooks

Spatial Data

📖 Ahead of time…

This block is all about understanding spatial data, both conceptually and practically. Before your fingers get on the keyboard, the

following readings will help you get going and familiar with core ideas:

Chapter 1 of the GDS Book [RABWng], which provides a conceptual overview of representing Geography in data

Chapter 3 of the GDS Book [RABWng], a sister chapter with a more applied perspective on how concepts are implemented in

computer data structures

Additionally, parts of this block are based and source from Block C in the GDS Course [AB19].

💻 Hands-on coding

(Geographic) tables

Note

https://darribas.org/gds_course/content/bA/lab_A.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://geographicdata.science/book/notebooks/01_geo_thinking.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
https://geographicdata.science/book/notebooks/03_spatial_data.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
https://darribas.org/gds_course/content/bC/lab_C.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9

Points

import pandas
import geopandas
import xarray, rioxarray
import contextily
import matplotlib.pyplot as plt

Data
If you want to read more about the data
sources behind this dataset, head to the
Datasets section

Assuming you have the file locally on the path ../data/:

pts = geopandas.read_file("../data/madrid_abb.gpkg")

Sometimes, points are provided as separate columns in an otherwise non-spatial table. For example imagine we have an

object cols which looks like:

In this case, we can convert those into proper geometries by:

Point geometries from columns

cols.head()

 X Y
0 0.259602 0.854351
1 0.661662 0.782427
2 0.932211 0.319130
3 0.395249 0.469885
4 0.303446 0.008525

pts = geopandas.GeoSeries(
 geopandas.points_from_xy(cols["X"], cols["Y"])
)

pts.info()

Local files Online read

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets

Show the top ten values of of price and neighbourhood

Lines

price price_usd log1p_price_usd accommodates bathrooms bedroom

0 $60.00 60.0 4.110874 2
1 shared

bath 1

1 $31.00 31.0 3.465736 1 1 bath 1

2 $60.00 60.0 4.110874 6 2 baths 3

3 $115.00 115.0 4.753590 4 1.5 baths 2

4 $26.00 26.0 3.295837 1
1 private

bath 1

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 18399 entries, 0 to 18398
Data columns (total 16 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 price 18399 non-null object
 1 price_usd 18399 non-null float64
 2 log1p_price_usd 18399 non-null float64
 3 accommodates 18399 non-null int64
 4 bathrooms 18399 non-null object
 5 bedrooms 18399 non-null float64
 6 beds 18399 non-null float64
 7 neighbourhood 18399 non-null object
 8 room_type 18399 non-null object
 9 property_type 18399 non-null object
 10 WiFi 18399 non-null object
 11 Coffee 18399 non-null object
 12 Gym 18399 non-null object
 13 Parking 18399 non-null object
 14 km_to_retiro 18399 non-null float64
 15 geometry 18399 non-null geometry
dtypes: float64(5), geometry(1), int64(1), object(9)
memory usage: 2.2+ MB

pts.head()

Challenge

Assuming you have the file locally on the path ../data/:

pts = geopandas.read_file("../data/arturo_streets.gpkg")

lines.info()

Local files Online read

_build/jupyter_execute/content/pages/02-Spatial_data_17_0.svg

Print descriptive statistics for population_density and average_quality

Polygons

neighbourhood neighbourhood_group geometry

0 Palacio Centro MULTIPOLYGON (((-3.70584
40.42030, -3.70625 40...

1 Embajadores Centro MULTIPOLYGON (((-3.70384
40.41432, -3.70277 40...

2 Cortes Centro MULTIPOLYGON (((-3.69796
40.41929, -3.69645 40...

3 Justicia Centro MULTIPOLYGON (((-3.69546
40.41898, -3.69645 40...

4 Universidad Centro MULTIPOLYGON (((-3.70107
40.42134, -3.70155 40...

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 66499 entries, 0 to 66498
Data columns (total 9 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 OGC_FID 66499 non-null object
 1 dm_id 66499 non-null object
 2 dist_barri 66483 non-null object
 3 average_quality 66499 non-null float64
 4 population_density 66499 non-null float64
 5 X 66499 non-null float64
 6 Y 66499 non-null float64
 7 value 5465 non-null float64
 8 geometry 66499 non-null geometry
dtypes: float64(5), geometry(1), object(3)
memory usage: 4.6+ MB

lines.loc[0, "geometry"]

Challenge

Assuming you have the file locally on the path ../data/:

polys = geopandas.read_file("../data/neighbourhoods.geojson")

polys.head()

polys.query("neighbourhood_group == 'Retiro'")

Local files Online read

neighbourhood neighbourhood_group geometry

13 Pacífico Retiro MULTIPOLYGON (((-3.67015
40.40654, -3.67017 40...

14 Adelfas Retiro MULTIPOLYGON (((-3.67283
40.39468, -3.67343 40...

15 Estrella Retiro MULTIPOLYGON (((-3.66506
40.40647, -3.66512 40...

16 Ibiza Retiro MULTIPOLYGON (((-3.66916
40.41796, -3.66927 40...

17 Jerónimos Retiro MULTIPOLYGON (((-3.67874
40.40751, -3.67992 40...

18 Niño Jesús Retiro MULTIPOLYGON (((-3.66994
40.40850, -3.67012 40...

Print the neighborhoods within the “Latina” group

Surfaces

polys.neighbourhood_group.unique()

array(['Centro', 'Arganzuela', 'Retiro', 'Salamanca', 'Chamartín',
 'Moratalaz', 'Tetuán', 'Chamberí', 'Fuencarral - El Pardo',
 'Moncloa - Aravaca', 'Puente de Vallecas', 'Latina',
'Carabanchel',
 'Usera', 'Ciudad Lineal', 'Hortaleza', 'Villaverde',
 'Villa de Vallecas', 'Vicálvaro', 'San Blas - Canillejas',
 'Barajas'], dtype=object)

Challenge

Assuming you have the file locally on the path ../data/:

sat = xarray.open_rasterio("../data/madrid_scene_s2_10_tc.tif")

sat

Local files Online read

xarray.DataArray (band: 3, y: 3681, x: 3129)

[34553547 values with dtype=uint8]

▼ Coordinates:

band (band) int64 1 2 3

x (x) float64 4.248e+05 4.248e+05 ... 4.56e+05

y (y) float64 4.499e+06 4.499e+06 ... 4.463e+06

spatial_ref () int64 0

► Indexes: (3)

▼ Attributes:

AREA_OR_… Area

scale_factor : 1.0

add_offset : 0.0

xarray.DataArray (y: 3681, x: 3129)

[11517849 values with dtype=uint8]

▼ Coordinates:

band () int64 1

x (x) float64 4.248e+05 4.248e+05 ... 4.56e+05

y (y) float64 4.499e+06 4.499e+06 ... 4.463e+06

spatial_ref () int64 0

► Indexes: (2)

▼ Attributes:

AREA_OR_… Area

scale_factor : 1.0

add_offset : 0.0

xarray.DataArray (band: 3, y: 1000, x: 1000)

[3000000 values with dtype=uint8]

▼ Coordinates:

band (band) int64 1 2 3

x (x) float64 4.3e+05 4.3e+05 ... 4.4e+05 4.4e+05

y (y) float64 4.48e+06 4.48e+06 ... 4.47e+06

spatial_ref () int64 0

► Indexes: (3)

▼ Attributes:

AREA_OR_… Area

scale_factor : 1.0

add_offset : 0.0

sat.sel(band=1)

sat.sel(
 x=slice(430000, 440000), # x is ascending
 y=slice(4480000, 4470000) # y is descending
)

Subset sat to band 2 and the section within [444444, 455555] of Easting and [4470000, 4480000] of Northing.

How many pixels does it contain?
What if you used bands 1 and 3 instead?

Visualisation

_build/jupyter_execute/content/pages/02-Spatial_data_36_1.png

_build/jupyter_execute/content/pages/02-Spatial_data_37_0.png

_build/jupyter_execute/content/pages/02-Spatial_data_39_0.png

Challenge

IMPORTANT
You will need version 0.10.0 or greater of
geopandas to use explore.

polys.explore()

Make this Notebook Trusted to load map: File -> Trust Notebook+
−

20 km

10 mi Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

polys.plot()

<Axes: >

ax = lines.plot(linewidth=0.1, color="black")
contextily.add_basemap(ax, crs=lines.crs)

See more basemap options here.

ax = pts.plot(color="red", figsize=(12, 12), markersize=0.1)
contextily.add_basemap(
 ax,
 crs = pts.crs,
 source = contextily.providers.CartoDB.DarkMatter
);

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright
https://contextily.readthedocs.io/en/latest/providers_deepdive.html

_build/jupyter_execute/content/pages/02-Spatial_data_40_1.png

_build/jupyter_execute/content/pages/02-Spatial_data_42_0.png

Make three plots of sat, plotting one single band in each

Spatial operations

(Re-)Projections

sat.plot.imshow(figsize=(12, 12))

<matplotlib.image.AxesImage at 0x7f7803bc36d0>

IMPORTANT
You will need version 1.1.0 of contextily to
use label layers. Install it with:

pip install \
 -U --no-deps \
 contextily

f, ax = plt.subplots(1, figsize=(12, 12))
sat.plot.imshow(ax=ax)
contextily.add_basemap(
 ax,
 crs=sat.rio.crs,
 source=contextily.providers.CartoDB.VoyagerOnlyLabels,
 zoom=11,
);

Challenge

pts.crs

<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World.
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

sat.rio.crs

CRS.from_epsg(32630)

pts.to_crs(sat.rio.crs).crs

_build/jupyter_execute/content/pages/02-Spatial_data_50_0.png

Centroids

<Projected CRS: EPSG:32630>
Name: WGS 84 / UTM zone 30N
Axis Info [cartesian]:
- [east]: Easting (metre)
- [north]: Northing (metre)
Area of Use:
- undefined
Coordinate Operation:
- name: UTM zone 30N
- method: Transverse Mercator
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

sat.rio.reproject(pts.crs).rio.crs

CRS.from_epsg(4326)

All into Web Mercator (EPSG:3857)
f, ax = plt.subplots(1, figsize=(12, 12))
Satellite image
sat.rio.reproject(
 "EPSG:3857"
).plot.imshow(
 ax=ax
)
Neighbourhoods
polys.to_crs(epsg=3857).plot(
 linewidth=2,
 edgecolor="xkcd:lime",
 facecolor="none",
 ax=ax
)
Labels
contextily.add_basemap(# No need to reproject
 ax,
 source=contextily.providers.CartoDB.VoyagerOnlyLabels,
);

Note the warning that geometric operations
with non-project CRS object result in biases.

polys.centroid

_build/jupyter_execute/content/pages/02-Spatial_data_55_2.png

Spatial joins

/tmp/ipykernel_2058/2101097851.py:1: UserWarning: Geometry is in a
geographic CRS. Results from 'centroid' are likely incorrect. Use
'GeoSeries.to_crs()' to re-project geometries to a projected CRS before
this operation.

 polys.centroid

0 POINT (-3.71398 40.41543)
1 POINT (-3.70237 40.40925)
2 POINT (-3.69674 40.41485)
3 POINT (-3.69657 40.42367)
4 POINT (-3.70698 40.42568)
 ...
123 POINT (-3.59135 40.45656)
124 POINT (-3.59723 40.48441)
125 POINT (-3.55847 40.47613)
126 POINT (-3.57889 40.47471)
127 POINT (-3.60718 40.46415)
Length: 128, dtype: geometry

lines.centroid

0 POINT (444133.737 4482808.936)
1 POINT (444192.064 4482878.034)
2 POINT (444134.563 4482885.414)
3 POINT (445612.661 4479335.686)
4 POINT (445606.311 4479354.437)
 ...
66494 POINT (451980.378 4478407.920)
66495 POINT (436975.438 4473143.749)
66496 POINT (442218.600 4478415.561)
66497 POINT (442213.869 4478346.700)
66498 POINT (442233.760 4478278.748)
Length: 66499, dtype: geometry

ax = polys.plot(color="purple")
polys.centroid.plot(
 ax=ax, color="lime", markersize=1
)

/tmp/ipykernel_2058/1054587808.py:2: UserWarning: Geometry is in a
geographic CRS. Results from 'centroid' are likely incorrect. Use
'GeoSeries.to_crs()' to re-project geometries to a projected CRS before
this operation.

 polys.centroid.plot(

<Axes: >

More information about spatial joins in
geopandas is available on its documentation
page

sj = geopandas.sjoin(
 lines,
 polys.to_crs(lines.crs)
)

sj.info()

https://geopandas.org/mergingdata.html#spatial-joins

Areas

Distances

geometry address

0 POINT (441477.245
4473939.537)

5, Calle Casado del Alisal, 28014, Calle
Casad...

_build/jupyter_execute/co

Subset of lines
ax = sj.query(
 "neighbourhood ==
).plot(color="xkcd:bri

Subset of line centr
ax = sj.query(
 "neighbourhood ==
).centroid.plot(
 color="xkcd:bright
)

Local basemap
contextily.add_basemap
 ax,
 crs=sj.crs,
 source="../data/ma
 alpha=0.5
)

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 69420 entries, 0 to 66438
Data columns (total 12 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 OGC_FID 69420 non-null object
 1 dm_id 69420 non-null object
 2 dist_barri 69414 non-null object
 3 average_quality 69420 non-null float64
 4 population_density 69420 non-null float64
 5 X 69420 non-null float64
 6 Y 69420 non-null float64
 7 value 5769 non-null float64
 8 geometry 69420 non-null geometry
 9 index_right 69420 non-null int64
 10 neighbourhood 69420 non-null object
 11 neighbourhood_group 69420 non-null object
dtypes: float64(5), geometry(1), int64(1), object(5)
memory usage: 6.9+ MB

areas = polys.to_crs(
 epsg=25830
).area * 1e-6 # Km2
areas.head()

0 1.471037
1 1.033253
2 0.592049
3 0.742031
4 0.947616
dtype: float64

cemfi = geopandas.tools.geocode(
 "Calle Casado del Alisal, 5, Madrid"
).to_crs(epsg=25830)
cemfi

polys.to_crs(
 cemfi.crs
).distance(
 cemfi.geometry
)

Give Task III in this block of the GDS course a go

🐾 Next steps

If you are interested in following up on some of the topics explored in this block, the following pointers might be

useful:

Although we have seen here geopandas only, all non-geographic operations on geo-tables are really thanks to

pandas, the workhorse for tabular data in Python. Their official documentation is an excellent first stop. If you

prefer a book, McKinney (2012) [McK12] is a great one.

For more detail on geographic operations on geo-tables, the Geopandas official documentation is a great place to continue the

journey.

Surfaces, as covered here, are really an example of multi-dimensional labelled arrays. The library we use, xarray represents the

cutting edge for working with these data structures in Python, and their documentation is a great place to wrap your head around

how data of this type can be manipulated. For geographic extensions (CRS handling, reprojections, etc.), we have used

rioxarray under the hood, and its documentation is also well worth checking.

Geovisualisation

📖 Ahead of time…

This block is all about visualising statistical data on top of a geography. Although this task looks simple, there are a few technical and

conceptual building blocks that it helps to understand before we try to make our own maps. Aim to complete the following readings by

the time we get our hands on the keyboard:

/tmp/ipykernel_2058/176561454.py:1: UserWarning: The indices of the two
GeoSeries are different.
 polys.to_crs(

0 1491.338749
1 NaN
2 NaN
3 NaN
4 NaN
 ...
123 NaN
124 NaN
125 NaN
126 NaN
127 NaN
Length: 128, dtype: float64

d2cemfi = polys.to_crs(
 cemfi.crs
).distance(
 cemfi.geometry[0] # NO index
)
d2cemfi.head()

0 1491.338749
1 565.418135
2 278.121017
3 650.926572
4 1196.771601
dtype: float64

_build/jupyter_execute/co

ax = polys.assign(
 dist=d2cemfi/1000
).plot("dist", legend=

cemfi.to_crs(
 polys.crs
).plot(
 marker="*",
 markersize=15,
 color="r",
 label="CEMFI",
 ax=ax
)

ax.legend()
ax.set_title(
 "Distance to CEMFI
);

Challenge

https://darribas.org/gds_course/content/bC/diy_C.html#task-iii-the-gender-gap-on-the-streets
https://pandas.pydata.org/docs/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id16
https://geopandas.org/
https://xarray.pydata.org/
https://corteva.github.io/rioxarray/

Block D of the GDS course [AB19], which provides an introduction to choropleths (statistical maps)

Chapter 5 of the GDS Book [RABWng], discussing choropleths in more detail

💻 Hands-on coding

Data

We will use the average measurement of nitrogen dioxide (no2_mean) by region throughout the block.

To make visualisation a bit easier below, we create an additional column with values rescaled:

This way, numbers are larger and will fit more easily on legends:

import geopandas
import xarray, rioxarray
import contextily
import seaborn as sns
from pysal.viz import mapclassify as mc
from legendgram import legendgram
import matplotlib.pyplot as plt
import palettable.matplotlib as palmpl
from splot.mapping import vba_choropleth

Data
If you want to read more about the data
sources behind this dataset, head to the
Datasets section

Assuming you have the file locally on the path ../data/:

db = geopandas.read_file("../data/cambodia_regional.gpkg")

_build/jupyter_execute/co

ax = db.to_crs(
 epsg=3857
).plot(
 edgecolor="red",
 facecolor="none",
 linewidth=2,
 alpha=0.25,
 figsize=(9, 9)
)
contextily.add_basemap
 ax,
 source=contextily.
)
ax.set_axis_off();

db.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 198 entries, 0 to 197
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 adm2_name 198 non-null object
 1 adm2_altnm 122 non-null object
 2 motor_mean 198 non-null float64
 3 walk_mean 198 non-null float64
 4 no2_mean 198 non-null float64
 5 geometry 198 non-null geometry
dtypes: float64(3), geometry(1), object(2)
memory usage: 9.4+ KB

db["no2_viz"] = db["no2_mean"] * 1e5

db[["no2_mean", "no2_viz"]].describe()

Local files Online read

https://darribas.org/gds_course/content/bD/concepts_D.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://geographicdata.science/book/notebooks/05_choropleth.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
http://www.tropomi.eu/data-products/nitrogen-dioxide
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets

no2_mean no2_viz

count 198.000000 198.000000

mean 0.000032 3.236567

std 0.000017 1.743538

min 0.000014 1.377641

25% 0.000024 2.427438

50% 0.000029 2.922031

75% 0.000034 3.390426

max 0.000123 12.323324

Choropleths

_build/jupyter_execute/content/pages/03-Geovisualisation_15_0.png

A classiffication problem

_build/jupyter_execute/content/pages/03-Geovisualisation_18_0.png

How to assign colors?

To build an intuition behind each classification algorithm more easily, we create a helper method (plot_classi) that generates

a visualisation of a given classification.

Toggle the cell below if you are interested in the code behind it.

ax = db.to_crs(
 epsg=3857
).plot(
 "no2_viz",
 legend=True,
 figsize=(12, 9)
)
contextily.add_basemap(
 ax,
 source=contextily.providers.CartoDB.VoyagerOnlyLabels,
 zoom=7
);

db["no2_viz"].unique().shape

(198,)

sns.displot(
 db, x="no2_viz", kde=True, aspect=2
);

Attention

Equal intervals

_build/jupyter_execute/content/pages/03-Geovisualisation_24_0.png

Quantiles

_build/jupyter_execute/content/pages/03-Geovisualisation_27_0.png

Fisher-Jenks

def plot_classi(classi, col, db):
 """
 Illustrate a classiffication
 ...

 Arguments

 classi : mapclassify.classifiers
 Classification object
 col : str
 Column name used for `classi`
 db : geopandas.GeoDataFrame
 Geo-table with data for
 the classification
 """
 f, ax = plt.subplots(figsize=(12, 6))
 ax.set_title(classi.name)
 # KDE
 sns.kdeplot(
 db[col], fill=True, ax=ax
)
 for i in range(0, len(classi.bins)-1):
 ax.axvline(classi.bins[i], color="red")
 # Map
 aux = f.add_axes([.6, .45, .32, .4])
 db.assign(lbls=classi.yb).plot(
 "lbls", cmap="viridis", ax=aux
)
 aux.set_axis_off()
 return None

classi = mc.EqualInterval(db["no2_viz"], k=7)
classi

EqualInterval

 Interval Count

[1.38, 2.94] | 103
(2.94, 4.50] | 80
(4.50, 6.07] | 6
(6.07, 7.63] | 1
(7.63, 9.20] | 3
(9.20, 10.76] | 0
(10.76, 12.32] | 5

classi = mc.Quantiles(db["no2_viz"], k=7)
classi

Quantiles

 Interval Count

[1.38, 2.24] | 29
(2.24, 2.50] | 28
(2.50, 2.76] | 28
(2.76, 3.02] | 28
(3.02, 3.35] | 28
(3.35, 3.76] | 28
(3.76, 12.32] | 29

_build/jupyter_execute/content/pages/03-Geovisualisation_30_0.png

Now let’s dig into the internals of classi:

How many colors?

classi = mc.FisherJenks(db["no2_viz"], k=7)
classi

FisherJenks

 Interval Count

[1.38, 2.06] | 20
(2.06, 2.69] | 58
(2.69, 3.30] | 62
(3.30, 4.19] | 42
(4.19, 5.64] | 7
(5.64, 9.19] | 4
(9.19, 12.32] | 5

classi

FisherJenks

 Interval Count

[1.38, 2.06] | 20
(2.06, 2.69] | 58
(2.69, 3.30] | 62
(3.30, 4.19] | 42
(4.19, 5.64] | 7
(5.64, 9.19] | 4
(9.19, 12.32] | 5

classi.k

7

classi.bins

array([2.05617382, 2.6925931 , 3.30281182, 4.19124954, 5.63804861,
 9.19190206, 12.32332434])

classi.yb

array([2, 3, 3, 1, 1, 2, 1, 1, 1, 0, 0, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 0,
 0, 4, 2, 1, 3, 1, 0, 0, 0, 1, 2, 2, 6, 5, 4, 2, 1, 3, 2, 3, 2, 1,
 2, 3, 2, 3, 1, 1, 3, 1, 2, 3, 3, 1, 3, 3, 1, 0, 1, 1, 3, 2, 0, 0,
 2, 1, 0, 0, 0, 2, 0, 1, 3, 3, 3, 2, 3, 2, 3, 1, 2, 3, 1, 1, 1, 1,
 2, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 1, 2, 3, 3, 2, 0, 3,
 1, 0, 1, 2, 1, 1, 2, 1, 2, 6, 5, 6, 2, 2, 3, 6, 3, 4, 3, 4, 2, 3,
 0, 2, 5, 6, 4, 5, 2, 2, 2, 1, 1, 1, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2,
 1, 1, 3, 4, 2, 1, 3, 1, 2, 3, 4, 0, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2,
 2, 2, 0, 0, 1, 2, 3, 3, 3, 3, 3, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1])

_build/jupyter_execute/content/pages/03-Geovisualisation_38_0.png

Using the right color

 Categories, non-ordered

 Graduated, sequential

 Graduated, divergent

Choropleths on Geo-Tables

Streamlined

How can we create classifications from data on geo-tables? Two ways:

Directly within plot (only for some algorithms)

_build/jupyter_execute/content/pages/03-Geovisualisation_44_0.png

The code used to generate this
figure uses more advanced features
than planned for this course.
If you want to inspect it, toggle the
cell below.

Attention

vals = [3, 5, 7, 9, 12, 15]
algos = ["equal_interval", "quantiles", "fisherjenks"]
f, axs = plt.subplots(
 len(algos), len(vals), figsize=(3*len(vals), 3*len(algos))
)
for i in range(len(algos)):
 for j in range(len(vals)):
 db.plot(
 "no2_viz", scheme=algos[i], k=vals[j], ax=axs[i, j]
)
 axs[i, j].set_axis_off()
 if i==0:
 axs[i, j].set_title(f"k={vals[j]}")
 if j==0:
 axs[i, j].text(
 -0.1,
 0.5,
 algos[i],
 horizontalalignment='center',
 verticalalignment='center',
 transform=axs[i, j].transAxes,
 rotation=90
)

For a safe choice, make sure to visit
ColorBrewer

db.plot(
 "no2_viz", scheme="quantiles", k=7, legend=True
);

https://jiffyclub.github.io/palettable/wesanderson/#fantasticfox2_5
https://jiffyclub.github.io/palettable/colorbrewer/sequential/#rdpu_5
https://jiffyclub.github.io/palettable/colorbrewer/diverging/#rdylgn_5
https://colorbrewer2.org/

Create an equal interval map with five bins for no2_viz

Manual approach

This is valid for any algorithm and provides much more flexibility at the cost of effort.

_build/jupyter_execute/content/pages/03-Geovisualisation_46_0.png

Value by alpha mapping

_build/jupyter_execute/content/pages/03-Geovisualisation_50_0.png

Legendgrams

Legendgrams are a way to more closely connect the statistical characteristics of your data to the map display.

Legendgrams are experimental at the moment so the code is a bit more involved and less stable. Use at your own risk!

Unfold the cell for an example.

See this tutorial for more details on fine tuning
choropleths manually

Challenge

classi = mc.Quantiles(db["no2_viz"], k=7)
db.assign(
 classes=classi.yb
).plot("classes");

See here for more examples of VBA mapping.

db['area_inv'] = 1 / db.to_crs(epsg=5726).area

_build/jupyter_execute/co# Set up figure and axis
f, ax = plt.subplots(1, figsize=(12, 9))
VBA choropleth
vba_choropleth(
 'no2_viz', # Column for color
 'area_inv', # Column for transparency (alpha)
 db, # Geo-table
 rgb_mapclassify={ # Options for color classification
 'classifier': 'quantiles', 'k':5
 },
 alpha_mapclassify={ # Options for alpha classification
 'classifier': 'quantiles', 'k':5
 },
 legend=True, # Add legend
 ax=ax # Axis
)
Add boundary lines
db.plot(color='none', linewidth=0.05, ax=ax);

Warning

https://pysal.org/mapclassify/notebooks/03_choropleth.html
https://github.com/pysal/splot/blob/main/notebooks/mapping_vba.ipynb

_build/jupyter_execute/content/pages/03-Geovisualisation_52_0.png

Give Task I in this block of the GDS course a go.

Choropleths on surfaces

(Implicit) continuous equal interval

_build/jupyter_execute/content/pages/03-Geovisualisation_58_0.png

_build/jupyter_execute/content/pages/03-Geovisualisation_59_0.png

Discrete equal interval

f, ax = plt.subplots(figsize=(9, 9))

classi = mc.Quantiles(db["no2_viz"], k=7)

db.assign(
 classes=classi.yb
).plot("classes", ax=ax)

legendgram(
 f, # Figure object
 ax, # Axis object of the map
 db["no2_viz"], # Values for the histogram
 classi.bins, # Bin boundaries
 pal=palmpl.Viridis_7,# color palette (as palettable object)
 legend_size=(.5,.2), # legend size in fractions of the axis
 loc = 'lower right', # matplotlib-style legend locations
)
ax.set_axis_off();

Challenge

Data
If you want to read more about the data
sources behind this dataset, head to the
Datasets section

Assuming you have the file locally on the path ../data/:

grid = xarray.open_rasterio(
 "../data/cambodia_s5_no2.tif"
).sel(band=1)

grid.where(
 grid != grid.rio.nodata
).plot(cmap="viridis");

grid.where(
 grid != grid.rio.nodata
).plot(cmap="viridis", robust=True);

grid.where(
 grid != grid.rio.nodata
).plot(cmap="viridis", levels=7)

Local files Online read

https://darribas.org/gds_course/content/bD/diy_D.html#task-i-ahah-choropleths
https://darribas.org/gds_course/content/bD/diy_D.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets

_build/jupyter_execute/content/pages/03-Geovisualisation_61_1.png

Combining with mapclassify

_build/jupyter_execute/content/pages/03-Geovisualisation_63_0.png

_build/jupyter_execute/content/pages/03-Geovisualisation_64_0.png

_build/jupyter_execute/content/pages/03-Geovisualisation_65_0.png

_build/jupyter_execute/content/pages/03-Geovisualisation_66_0.png

<matplotlib.collections.QuadMesh at 0x7fdd6012bcd0>

grid_nona = grid.where(
 grid != grid.rio.nodata
)

classi = mc.Quantiles(
 grid_nona.to_series().dropna(), k=7
)

grid_nona.plot(
 cmap="viridis", levels=classi.bins
)
plt.title(classi.name);

grid_nona = grid.where(
 grid != grid.rio.nodata
)

classi = mc.FisherJenksSampled(
 grid_nona.to_series().dropna().values, k=7
)

grid_nona.plot(
 cmap="viridis", levels=classi.bins
)
plt.title(classi.name);

grid_nona = grid.where(
 grid != grid.rio.nodata
)

classi = mc.StdMean(
 grid_nona.to_series().dropna().values
)

grid_nona.plot(
 cmap="coolwarm", levels=classi.bins
)
plt.title(classi.name);

grid_nona = grid.where(
 grid != grid.rio.nodata
)

classi = mc.BoxPlot(
 grid_nona.to_series().dropna().values
)

grid_nona.plot(
 cmap="coolwarm", levels=classi.bins
)
plt.title(classi.name);

Read the satellite image for Madrid used in the previous section and create three choropleths, one for each band, using the

colormaps Reds, Greens, Blues.

Play with different classification algorithms.

Do the results change notably?
If so, why do you think that is?

🐾 Next steps

If you are interested in statistical maps based on classification, here are two recommendations to check out next:

On the technical side, the documentation for mapclassify (including its tutorials) provides more detail and illustrates more

classification algorithms than those reviewed in this block

On a more conceptual note, Cynthia Brewer’s “Designing better maps” [Bre15] is an excellent blueprint for good map making.

Spatial Feature Engineering (I)

Map Matching

📖 Ahead of time…

Feature Engineering is a common term in machine learning that refers to the processes and transformations involved in turning data

from the state in which the modeller access them into what is then fed to a model. This can take several forms, from standardisation of

the input data, to the derivation of numeric scores that better describe aspects (features) of the data we are using.

Spatial Feature Engineering refers to operations we can use to derive “views” or summaries of our data that we can use in models,

using space as the key medium to create them.

There is only one reading to complete for this block, Chapter 12 of the GDS Book [RABWng]. The first block of Spatial Feature

Engineering in this course loosely follows the first part of the chapter (Map Matching), so focus on this first sections for the block.

💻 Hands-on coding

Challenge

import pandas
import geopandas
import xarray, rioxarray
import contextily
import numpy as np
import matplotlib.pyplot as plt

Data
If you want to read more about the data
sources behind this dataset, head to the
Datasets section

Assuming you have the file locally on the path ../data/:

Local files Online read

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/notebooks/02-Spatial_data
https://pysal.org/mapclassify/
https://pysal.org/mapclassify/tutorial.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id43
https://geographicdata.science/book/notebooks/12_feature_engineering.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
https://geographicdata.science/book/notebooks/12_feature_engineering.html#feature-engineering-using-map-matching
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets

Check both geo-tables and the surface are in the same CRS:

Polygons to points

In which region is a city?

UC_NM_MN adm2_name

0 Sampov Lun Sampov Lun

1 Khum Pech Chenda Phnum Proek

2 Poipet Paoy Paet

3 Sisophon Serei Saophoan

4 Battambang Battambang

5 Siem Reap Siem Reap

6 Sihanoukville Preah Sihanouk

7 N/A Trapeang Prasat

8 Kampong Chhnang Kampong Chhnang

9 Phnom Penh Tuol Kouk

10 Kampong Cham Kampong Cham

Using the Madrid AirBnb properties and neighbourhoods dataset, can you determine the neighbourhood group of the first ten

properties?

Points to polygons

If we were after the number of cities per region, it is a similar approach, with a (groupby) twist at the end:

regions = geopandas.read_file("../data/cambodia_regional.gpkg")
cities = geopandas.read_file("../data/cambodian_cities.geojson")
pollution = rioxarray.open_rasterio(
 "../data/cambodia_s5_no2.tif"
).sel(band=1)
friction = rioxarray.open_rasterio(
 "../data/cambodia_2020_motorized_friction_surface.tif"
).sel(band=1)

(
 regions.crs.to_epsg() ==
 cities.crs.to_epsg() ==
 pollution.rio.crs.to_epsg()
)

True

sj = geopandas.sjoin(cities, regions)

City name | Region name
sj[["UC_NM_MN", "adm2_name"]]

Challenge

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#data-abb
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#data-abb-neis

Using the Madrid AirBnb properties, can you compute how many properties each neighbourhood group has?

Surface to points

Consider attaching to each city in cities the pollution level, as expressed in pollution.

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_21_0.png

1. We set_index to align both tables
2. We assign to create a new

column

If you want no missing values, you
can fillna(0) since you know
missing data are zeros

Note

regions.set_index(
 "adm2_name"
).assign(
 city_count=sj.groupby("adm2_name").size()
).info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 198 entries, Mongkol Borei to Administrative unit not available
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 adm2_altnm 122 non-null object
 1 motor_mean 198 non-null float64
 2 walk_mean 198 non-null float64
 3 no2_mean 198 non-null float64
 4 geometry 198 non-null geometry
 5 city_count 11 non-null float64
dtypes: float64(4), geometry(1), object(1)
memory usage: 18.9+ KB

Challenge

The code for generating this figure is a bit more
advanced as it fiddles with text, but if you want
to explore it you can toggle it on

f, ax = plt.subplots(1, figsize=(9, 9))

pollution.where(
 pollution>0
).plot(
 ax=ax, add_colorbar=False
)

for i, row in cities.iterrows():
 plt.text(
 row.geometry.x,
 row.geometry.y,
 row["UC_NM_MN"],
 fontdict={"color": "white"},
)

cities.plot(ax=ax, color="r");

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#data-abb

And we can map these on the city locations:

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_24_0.png

Can you calculate the pollution level at the centroid of each Cambodian region in the regional aggregates dataset? how does it

compare to their average value?

Surface to polygons

Instead of transferring to points, we want to aggregate all the information in a surface that falls within a polygon.

For this case, we will use the motorised friction surface. The question we are asking thus is: what is the average degree of friction of
each region? Or, in other words: what regions are harder to get through with motorised transport?

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_28_0.png

from rasterstats import point_query

city_pollution = point_query(
 cities,
 pollution.values,
 affine=pollution.rio.transform(),
 nodata=pollution.rio.nodata
)
city_pollution

[3.9397064813333136e-05,
 3.4949825609644426e-05,
 3.825255125820345e-05,
 4.103826573585785e-05,
 3.067677208474005e-05,
 5.108273256655399e-05,
 2.2592785882580366e-05,
 4.050414400882722e-05,
 2.4383652926989897e-05,
 0.0001285838935209779,
 3.258245740282522e-05]

ax = cities.assign(
 pollution=city_pollution
).plot(
 "pollution",
 cmap="YlOrRd",
 legend=True
)

contextily.add_basemap(
 ax=ax, crs=cities.crs,
);

Challenge

f, ax = plt.subplots(1, figsize=(9, 9))
friction.plot.imshow(
 add_colorbar=False, ax=ax
)
regions.plot(
 ax=ax, edgecolor="red", facecolor="none"
)
contextily.add_basemap(
 ax,
 crs=regions.crs,
 source=contextily.providers.CartoDB.DarkMatterOnlyLabels,
 zoom=7
)

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#data-cam-friction-reg

Again, we can rely on rasterstats:

min max mean count

0 0.001200 0.037000 0.006494 979

1 0.001200 0.060000 0.007094 1317

2 0.001200 0.024112 0.006878 324

3 0.001333 0.060000 0.009543 758

4 0.001200 0.060132 0.008619 55

This can then also be mapped onto the polygon geography:

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_32_0.png

Replicate the analysis above to obtain the average friction for each region using the walking surface

(cambodia_2020_walking_friction_surface.tif).

Surface to surface

If we want to align the pollution surface with that of friction, we need to resample them to make them “fit on the same frame”.

The output is returned from zonal_stats as a
list of dicts. To make it more manageable, we
convert it into a pandas.DataFrame.

from rasterstats import zonal_stats

regional_friction = pandas.DataFrame(
 zonal_stats(
 regions,
 friction.values,
 affine=friction.rio.transform(),
 nodata=friction.rio.nodata
),
 index=regions.index
)
regional_friction.head()

f, ax = plt.subplots(1, figsize=(9, 9))
regions.to_crs(
 epsg=3857
).join(
 regional_friction
).plot(
 "mean", scheme="quantiles", ax=ax
)
contextily.add_basemap(
 ax,
 source=contextily.providers.CartoDB.VoyagerOnlyLabels,
 zoom=7
)

Challenge

pollution.shape

(138, 152)

This involves either moving one surface to the frame of the other one, or both into an entirely new one. For the sake of the illustration,

we will do the latter and select a frame that is 300 by 400 pixels. Note this involves stretching (upsampling) pollution, while

compressing (downsampling) friction.

Trasfer the pollution surface to the frame of friction, and viceversa.

The following methods involve modelling and are thus more sophisticated. Take these as a conceptual introduction with an

empirical illustration, but keep in mind there are extense literatures on each of them and these cover some of the simplest

cases.

Points to points

For this exampe, we will assume that, instead of a surface with pollution values, we only have available a sample of points and we

would like to obtain estimates for other locations.

For that we will first generate 100 random points within the extent of pollution which we will take as the location of our measurement

stations:

friction.shape

(574, 636)

Define dimensions
dimX, dimY = 300, 400
minx, miny, maxx, maxy = pollution.rio.bounds()
Create XY indices
ys = np.linspace(miny, maxy, dimY)
xs = np.linspace(minx, maxx, dimX)
Set up placeholder array
canvas = xarray.DataArray(
 np.zeros((dimY, dimX)),
 coords=[ys, xs],
 dims=["y", "x"]
).rio.write_crs(4326) # Add CRS

cvs_pollution = pollution.rio.reproject_match(canvas)
cvs_friction = friction.rio.reproject_match(canvas)

cvs_pollution.shape

(400, 300)

cvs_pollution.shape == cvs_friction.shape

True

Challenge

Attention

See this section of Chapter 12 of the GDS
Book [RABWng] for more details on the
technique

https://geographicdata.science/book/notebooks/12_feature_engineering.html#point-interpolation-using-sklearn
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44

Our station values come from the pollution surface, but we assume we do not have access to the latter, and we would like to obtain

estimates for the location of the cities:

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_50_0.png

We will need the location and the pollution measurements for every station as separate arrays. Before we do that, since we will be

calculating distances, we convert our coordinates to a system expressed in metres.

We also need to extract the pollution measurements for each station location:

And finally, we will also need the locations of each city expressed in the same coordinate system:

The code in this cell contains bits
that are a bit more advanced, do not
despair if not everything makes
sense!

Note

np.random.seed(123456)

bb = pollution.rio.bounds()
station_xs = np.random.uniform(bb[0], bb[2], 100)
station_ys = np.random.uniform(bb[1], bb[3], 100)
stations = geopandas.GeoSeries(
 geopandas.points_from_xy(station_xs, station_ys),
 crs="EPSG:4326"
)

f, ax = plt.subplots(1, figsize=(6, 6))

pollution.where(
 pollution>0
).plot(
 add_colorbar=False, cmap="Blues", ax=ax
)

stations.plot(ax=ax, color="red", label="Stations")
cities.plot(ax=ax, color="lime", label="Cities")

ax.set_title("Pollution sampling")

plt.legend();

stations_mt = stations.to_crs(epsg=5726)
station_xys = np.array(
 [stations_mt.geometry.x, stations_mt.geometry.y]
).T

station_measurements = np.array(
 point_query(
 stations,
 pollution.values,
 affine=pollution.rio.transform(),
 nodata=pollution.rio.nodata
)
)

cities_mt = cities.to_crs(epsg=5726)
city_xys = np.array(
 [cities_mt.geometry.x, cities_mt.geometry.y]
).T

http://epsg.io/5726

For this illustration, we will use a \(k\)-nearest neighbors regression that estimates the value for each target point (cities in our case)

as the average weighted by distance of its \(k\) nearest neigbors. In this illustration we will use \(k=10\).

Once we have trained the model, we can use it to obtain predictions for each city location:

These can be compared with the originally observed values:

Observed Predicted

UC_NM_MN

Sampov Lun 0.000039 0.000027

Khum Pech Chenda 0.000035 0.000025

Poipet 0.000038 0.000030

Sisophon 0.000041 0.000030

Battambang 0.000031 0.000027

Siem Reap 0.000051 0.000027

Sihanoukville 0.000023 0.000019

N/A 0.000041 0.000028

Kampong Chhnang 0.000024 0.000032

Phnom Penh 0.000129 0.000042

Kampong Cham 0.000033 0.000033

Replicate the analysis above with \(k=15\) and \(k=5\). Do results change? Why do you think that is?

Points to surface

Note how sklearn relies only on array data
structures, hence why we first had to express
all the required information in that format

from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor(
 n_neighbors=10, weights="distance"
).fit(station_xys, station_measurements)

predictions = model.predict(city_xys)

p2p_comparison = pandas.DataFrame(
 {
 "Observed": city_pollution,
 "Predicted": predictions
 },
 index=cities["UC_NM_MN"]
)

_build/jupyter_execute/co

f, ax = plt.subplots(1
p2p_comparison["Observ
p2p_comparison["Predic
ax.set_axis_off()
plt.legend(frameon=Fal

p2p_comparison

Challenge

Imagine we do not have a surface like pollution but we need it. In this context, if you have measurements from some locations, such

as in stations, we can use the approach reviewed above to generate a surface. The trick to do this is to realise that we can generate a

uniform grid of target locations that we can then express as a surface.

We will set as our target locations those of the pixels in the target surface we have seen above:

To obtain pollution estimates at each location, we can predict with model:

And with these at hand, we can convert them into a surface:

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_74_0.png

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_75_0.png

Room for improvement but, remember this was a rough first pass!

canvas_mt = canvas.rio.reproject(5726)

xy_pairs = canvas_mt.to_series().index
xys = np.array(
 [
 xy_pairs.get_level_values("x"),
 xy_pairs.get_level_values("y")
]
).T

predictions_grid = model.predict(xys)

predictions_series = pandas.DataFrame(
 {"predictions_grid": predictions_grid}
).join(
 pandas.DataFrame(xys, columns=["x", "y"])
).set_index(["y", "x"])

predictions_surface = xarray.DataArray().from_series(
 predictions_series["predictions_grid"]
).rio.write_crs(canvas_mt.rio.crs)

f, axs = plt.subplots(1, 2, figsize=(16, 6))

cvs_pollution.where(
 cvs_pollution>0
).plot(ax=axs[0])
axs[0].set_title("Observed")

predictions_surface.where(
 predictions_surface>0
).rio.reproject_match(
 cvs_pollution
).plot(ax=axs[1])
axs[1].set_title("Predicted")

plt.show()

f, ax = plt.subplots(1, figsize=(9, 4))
cvs_pollution.where(
 cvs_pollution>0
).plot.hist(
 bins=100, alpha=0.5, ax=ax, label="Observed"
)
predictions_surface.rio.reproject_match(
 cvs_pollution
).plot.hist(
 bins=100, alpha=0.5, ax=ax, color="g", label="predicted"
)
plt.legend()
plt.show()

Train a model with pollution measurements from each city location and generate a surface from it. How does the output
compare to the one above? Why do you think that is?

Polygons to polygons

In this final example, we transfer data from a polygon geography to another polygon geography. Effectively, we re-apportion values from

one set of areas to another based on the extent of shared area.

Our illustration will cover how to move pollution estimates from regions into a uniform hexagonal grid we will first create.

Not that pollution is expressed as an intesive (rate) variable. We need to recognise this when specifying the interpolation model:

And the results look like:

Challenge

This code requires tobler 0.7.0 or
above

Important

import tobler

hex_grid = tobler.util.h3fy(
 regions, resolution=5
)

This feature requires tobler 6.0 or
above

Attention

%%time
pollution_hex = tobler.area_weighted.area_interpolate(
 regions.assign(geometry=regions.buffer(0)).to_crs(epsg=5726),
 hex_grid.to_crs(epsg=5726),
 intensive_variables=["no2_mean"]
)

CPU times: user 440 ms, sys: 4.92 ms, total: 445 ms
Wall time: 447 ms

_build/jupyter_execute/content/pages/04-Spatial_feature_eng_i_85_0.png

Replicate the analytis using resolution = 4. How is the result different? Why?

🐾 Next steps

If you are interested in learning more about spatial feature engineering through map matching, the following pointers might be useful to

delve deeper into specific types of “data transfer”:

The datashader library is a great option to transfer geo-tables into surfaces, providing tooling to perform these operations in a

highly efficient and performant way.

When aggregating surfaces into geo-tables, the library rasterstats contains most if not all of the machinery you will need.

For transfers from polygon to polygon geographies, tobler is your friend. Its official documentation contains examples for different

use cases.

Spatial Feature Engineering (II)

Map Synthesis

📖 Ahead of time…

In this second part of Spatial Feature Engineering, we turn to Map Synthesis. There is only one reading to complete for this block,

Chapter 12 of the GDS Book [RABWng]. This block of Spatial Feature Engineering in this course loosely follows the second part of the

chapter (Map Synthesis).

💻 Hands-on coding

f, axs = plt.subplots(1, 3, figsize=(12, 4))

regions.plot(
 "no2_mean", scheme="quantiles", k=12, ax=axs[0]
)
axs[0].set_axis_off()

hex_grid.plot(
 facecolor="none", edgecolor="red", ax=axs[1]
)
axs[1].set_axis_off()

pollution_hex.to_crs(epsg=4326).plot(
 "no2_mean", scheme="quantiles", k=12, ax=axs[2]
)
axs[2].set_axis_off()

plt.show()

Challenge

import pandas, geopandas
import numpy as np
import contextily
import tobler

Data
If you want to read more about the data
sources behind this dataset, head to the
Datasets section

https://datashader.org/
https://pythonhosted.org/rasterstats/
https://pysal.org/tobler/
https://geographicdata.science/book/notebooks/12_feature_engineering.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
https://geographicdata.science/book/notebooks/12_feature_engineering.html#feature-engineering-using-map-synthesis
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/datasets

We will be working with a modified version of pts:

Since we will require distance calculations, we will switch to the Spanish official projection

To make calculations in the illustration near-instantaneous, we will work with a smaller (random) sample of Airbnb properties (10%

of the total)

As you can see in the description, the new CRS is expressed in metres:

Distance buffers

How many Airbnb’s are within 500m of each Airbnb?

Using DistanceBand, we can build a spatial weights matrix that assigns 1 to each observation within 500m, and 0 otherwise.

Assuming you have the file locally on the path ../data/:

pts = geopandas.read_file("../data/madrid_abb.gpkg")

db = pts.sample(
 frac=0.1, random_state=123
).to_crs(epsg=25830)

db.crs

<Projected CRS: EPSG:25830>
Name: ETRS89 / UTM zone 30N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Europe between 6°W and 0°W: Faroe Islands offshore; Ireland -
offshore; Jan Mayen - offshore; Norway including Svalbard - offshore;
Spain - onshore and offshore.
- bounds: (-6.0, 35.26, 0.01, 80.49)
Coordinate Operation:
- name: UTM zone 30N
- method: Transverse Mercator
Datum: European Terrestrial Reference System 1989 ensemble
- Ellipsoid: GRS 1980
- Prime Meridian: Greenwich

from pysal.lib import weights

%%time
w500m = weights.DistanceBand.from_dataframe(
 db, threshold=500, binary=True
)

Local files Online read

The number of neighbors can be accessed through the cardinalities attribute:

_build/jupyter_execute/content/pages/05-Spatial_feature_eng_ii_19_0.png

Calculate the number of AirBnb properties within 250m of each other property. What is the average?

Distance rings

How many Airbnb’s are between 500m and 1km of each Airbnb?

Now, we could do simply a subtraction:

Or, if we need to know which is which, we can use set operations on weights:

CPU times: user 283 ms, sys: 16.8 ms, total: 300 ms
Wall time: 303 ms

/opt/conda/envs/gds/lib/python3.9/site-
packages/libpysal/weights/weights.py:224: UserWarning: The weights matrix
is not fully connected:
 There are 86 disconnected components.
 There are 47 islands with ids: 6878, 16772, 15006, 1336, 3168, 15193,
1043, 5257, 4943, 12849, 10609, 11309, 10854, 10123, 3388, 9380, 10288,
13071, 3523, 15316, 3856, 205, 7720, 10454, 18307, 3611, 12405, 10716,
14813, 15467, 1878, 16597, 14329, 7933, 16215, 13525, 13722, 11932,
14456, 8848, 15197, 8277, 9922, 13072, 13852, 5922, 17151.
 warnings.warn(message)

n_neis = pandas.Series(w500m.cardinalities)
n_neis.head()

11297 213
2659 5
16242 21
15565 9
14707 159
dtype: int64

db.assign(
 n_neis=n_neis
).plot("n_neis", markersize=0.1);

Challenge

%%time
w1km = weights.DistanceBand.from_dataframe(
 db, threshold=1000, binary=True
)

CPU times: user 915 ms, sys: 67.5 ms, total: 982 ms
Wall time: 995 ms

/opt/conda/envs/gds/lib/python3.9/site-
packages/libpysal/weights/weights.py:224: UserWarning: The weights matrix
is not fully connected:
 There are 20 disconnected components.
 There are 5 islands with ids: 4943, 12849, 15467, 13525, 11932.
 warnings.warn(message)

n_ring_neis = pandas.Series(w1km.cardinalities) - n_neis

And we can confirm they’re both the same:

Can you create a plot with the following two lines?

One depicting the average number of properties within a range of 50m, 100m, 250m, 500m, 750m

Another one with the increase of average neighbors for the same distances above

Cluster membership (points)

We can use the spatial configuration of observations to classify them as part of clusters or not, which can then be encoded, for

example, as dummy variables in a model.

We will illustrate it with a minimum number of points of min_pct % of the sample and a maximum radious of eps metres.

We will attach the labels to db for easy access:

We can define boundaries to turn point clusters into polygons if that fits our needs better:

w_ring = weights.w_difference(w1km, w500m, constrained=False)

/opt/conda/envs/gds/lib/python3.9/site-
packages/libpysal/weights/weights.py:224: UserWarning: The weights matrix
is not fully connected:
 There are 34 disconnected components.
 There are 23 islands with ids: 3744, 4143, 4857, 4943, 6986, 8345, 8399,
9062, 10592, 10865, 11574, 11613, 11785, 11840, 11932, 12015, 12635,
12714, 12849, 13091, 13317, 13525, 15467.
 warnings.warn(message)

(pandas.Series(w_ring.cardinalities) - n_ring_neis).sum()

0

Challenge

These magic numbers need to be pre-set and
you can play with both min_pct (or min_pts
directly) and eps to see how they affect the
results (spoiler: a lot!)

from sklearn.cluster import DBSCAN

min_pct = 2
min_pts = len(db) * min_pct // 100
eps = 500

model = DBSCAN(min_samples=min_pts, eps=eps)
model.fit(
 db.assign(
 x=db.geometry.x
).assign(
 y=db.geometry.y
)[['x', 'y']]
);

db["labels"] = model.labels_

And we can see what the clusters look like:

_build/jupyter_execute/content/pages/05-Spatial_feature_eng_ii_41_0.png

How does the map above change if you require 5% of points instead of 2% for a candidate cluster to be considered so?

Cluster membership (polygons)

We can take a similar approach as above if we have polygon geographies instead of points. Rather than using DBSCAN, here we can

rely on local indicators of spatial association (LISAs) to pick up spatial concentrations of high or low values.

For the illustration, we will aggregate the location of Airbnb properties to a regular hexagonal grid, similar to how we generated it when

transfering from polygons to polygons. First we create a polygon covering the extent of points:

Then we can tessellate:

The code in this cell is a bit more
advanced than expected for this
course, but is used here as an
illustration.

Attention

from pysal.lib import cg

boundaries = []
cl_ids = [i for i in db["labels"].unique() if i!=-1]
for cl_id in cl_ids:
 sub = db.query(f"labels == {cl_id}")
 cluster_boundaries = cg.alpha_shape_auto(
 np.array(
 [sub.geometry.x, sub.geometry.y]
).T,
)
 boundaries.append(cluster_boundaries)
boundaries = geopandas.GeoSeries(
 boundaries, index=cl_ids, crs=db.crs
)

ax = db.to_crs(
 epsg=3857
).plot(
 markersize=0.1, color="lime"
)
boundaries.to_crs(
 epsg=3857
).plot(
 ax=ax, edgecolor="red", facecolor="none"
)
contextily.add_basemap(
 ax,
 source=contextily.providers.CartoDB.DarkMatterNoLabels
)

Challenge

one = geopandas.GeoSeries(
 [cg.alpha_shape_auto(
 np.array(
 [db.geometry.x, db.geometry.y]
).T,
)],
 crs=db.crs
)

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#sfe-p2p

And obtain a count of points in each polygon:

_build/jupyter_execute/content/pages/05-Spatial_feature_eng_ii_49_0.png

To identify spatial clusters, we rely on esda:

And compute the LISA statistics:

abb_hex = tobler.util.h3fy(
 one, resolution=8
)

/opt/conda/envs/gds/lib/python3.9/site-packages/pyproj/crs/crs.py:1293:
UserWarning: You will likely lose important projection information when
converting to a PROJ string from another format. See:
https://proj.org/faq.html#what-is-the-best-format-for-describing-
coordinate-reference-systems
 proj = self._crs.to_proj4(version=version)

counts = geopandas.sjoin(
 db, abb_hex
).groupby(
 "index_right"
).size()

abb_hex["count"] = counts
abb_hex["count"] = abb_hex["count"].fillna(0)

abb_hex.plot("count", scheme="fisherjenks");

from pysal.explore import esda

/opt/conda/envs/gds/lib/python3.9/site-
packages/numba/core/decorators.py:262: NumbaDeprecationWarning:
numba.generated_jit is deprecated. Please see the documentation at:
https://numba.readthedocs.io/en/stable/reference/deprecation.html#depreca
tion-of-generated-jit for more information and advice on a suitable
replacement.
 warnings.warn(msg, NumbaDeprecationWarning)
/opt/conda/envs/gds/lib/python3.9/site-
packages/numba/core/decorators.py:262: NumbaDeprecationWarning:
numba.generated_jit is deprecated. Please see the documentation at:
https://numba.readthedocs.io/en/stable/reference/deprecation.html#depreca
tion-of-generated-jit for more information and advice on a suitable
replacement.
 warnings.warn(msg, NumbaDeprecationWarning)
/opt/conda/envs/gds/lib/python3.9/site-packages/quantecon/lss.py:20:
NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied
to the 'numba.jit' decorator. The implicit default value for this
argument is currently False, but it will be changed to True in Numba
0.59.0. See
https://numba.readthedocs.io/en/stable/reference/deprecation.html#depreca
tion-of-object-mode-fall-back-behaviour-when-using-jit for details.
 def simulate_linear_model(A, x0, v, ts_length):
/opt/conda/envs/gds/lib/python3.9/site-packages/spaghetti/network.py:40:
FutureWarning: The next major release of pysal/spaghetti (2.0.0) will
drop support for all ``libpysal.cg`` geometries. This change is a first
step in refactoring ``spaghetti`` that is expected to result in
dramatically reduced runtimes for network instantiation and operations.
Users currently requiring network and point pattern input as
``libpysal.cg`` geometries should prepare for this simply by converting
to ``shapely`` geometries.
 warnings.warn(dep_msg, FutureWarning, stacklevel=1)

w = weights.Queen.from_dataframe(abb_hex)
lisa = esda.Moran_Local(abb_hex["count"], w)

For a visual inspection of the clusters, splot:

_build/jupyter_execute/content/pages/05-Spatial_feature_eng_ii_56_0.png

And, if we want to extract the labels for each polygon, we can do so from the lisa object:

🐾 Next steps

If you want a bit more background into some of the techniques reviewed in this block, the following might be of interest:

Block E of the GDS Course [AB19] will introduce you to more techniques like the LISAs seen above to explore the spatial

dimension of the statistical properties of your data. If you want a more detailed read, Chapter 4 of the GDS Book [RABWng] will do

just that.

Block F of the GDS Course [AB19] will introduce you to more techniques like the LISAs seen above to explore the spatial

dimension of the statistical properties of your data. If you want a more detailed read, Chapter 7 of the GDS Book [RABWng] will do

just that.

Block H of the GDS Course [AB19] will introduce you to more techniques for exploring point patterns. If you want a more

comprehensive read, Chapter 8 of the GDS Book [RABWng] will do just that.

OpenStreetMap

📖 Ahead of time…

This session is all about OpenStreetMap. To provide an overview of what the project is, whether you have never heard of it or you are

somewhat familiar, the followring will set your mind “on course”:

The following short clip provides a general overview of what OpenStreetMap is

/tmp/ipykernel_2683/2473509840.py:1: FutureWarning: `use_index` defaults
to False but will default to True in future. Set True/False directly to
control this behavior and silence this warning
 w = weights.Queen.from_dataframe(abb_hex)

from pysal.viz import splot
from splot.esda import lisa_cluster

lisa_cluster(lisa, abb_hex, p=0.01);

lisa.q * (lisa.p_sim < 0.01)

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0,
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0,
 1, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0,
 0, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0,
 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 3,
 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0,
 0, 1, 0, 0, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 1, 0, 0])

http://darribas.org/gds_course/content/bE/concepts_E.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://geographicdata.science/book/notebooks/04_spatial_weights.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
http://darribas.org/gds_course/content/bF/concepts_F.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://geographicdata.science/book/notebooks/07_local_autocorrelation.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44
http://darribas.org/gds_course/content/bH/concepts_H.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://geographicdata.science/book/notebooks/08_point_pattern_analysis.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id44

This recent piece contains several interesting points about how OpenStreetMap is currently being created and some of the

implications this model may have.

Anderson et al. (2019) [ASP19] provides some of the academic underpinnings to the views expressed in Morrison’s piece

💻 Hands-on coding

Since some of the query options we will discuss involve pre-defined extents, we will read the Madrid neighbourhoods dataset first:

To make some of the examples below easy on OpenStreetMap servers, we will single out the smallest neighborhood:

neighbourhood neighbourhood_group geometry

98 Atalaya Ciudad Lineal MULTIPOLYGON (((-3.66195
40.46338, -3.66364 40...

_build/jupyter_execute/content/pages/06-OpenStreetMap_12_0.png

osmnx

Two Minute Tutorials: What is OpenStreetMap?

import geopandas
import contextily
from IPython.display import GeoJSON

Assuming you have the file locally on the path ../data/:

neis = geopandas.read_file("../data/neighbourhoods.geojson")

areas = neis.to_crs(
 epsg=32630
).area

smallest = neis[areas == areas.min()]
smallest

ax = smallest.plot(
 facecolor="none", edgecolor="blue", linewidth=2
)
contextily.add_basemap(
 ax,
 crs=smallest.crs,
 source=contextily.providers.OpenStreetMap.Mapnik
);

Local files Online read

https://joemorrison.medium.com/openstreetmap-is-having-a-moment-dcc7eef1bb01
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id6
https://www.youtube.com/watch?v=Phwrgb16oEM

Much of the methods covered here rely on the osmnx.features module. Check out its reference here

There are two broad areas to keep in mind when querying data on OpenStreetMap through osmnx:

The interface to specify the extent of the search

The nature of the entities being queried. Here, the interface relies entirely on OpenStreetMap’s tagging system. Given the

distributed nature of the project, this is variable, but a good place to start is:

https://wiki.openstreetmap.org/wiki/Tags

Generally, the interface we will follow involves the following:

The <extent> can take several forms:

The tags follow the official feature spec.

Buildings

_build/jupyter_execute/content/pages/06-OpenStreetMap_25_0.png

import osmnx as ox

Here is a trick to pin all your queries to
OpenStreetMap to a specific date, so results
are always reproducible, even if the map
changes in the meantime.
Tip courtesy of Martin Fleischmann.

ox.settings.overpass_settings = (
 '[out:json][timeout:90][date:"2021-03-07T00:00:00Z"]'
)

Tip

received_entities = ox.features_from_XXX(
 <extent>, tags={<key>: True/<value(s)>}, ...
)

[i for i in dir(ox) if "features_from_" in i]

['features_from_address',
 'features_from_bbox',
 'features_from_place',
 'features_from_point',
 'features_from_polygon',
 'features_from_xml']

blgs = ox.features_from_polygon(
 smallest.squeeze().geometry, tags={"building": True}
)

blgs.plot();

blgs.info()

https://osmnx.readthedocs.io/en/stable/osmnx.html#module-osmnx.features
https://wiki.openstreetmap.org/wiki/Tags
https://wiki.openstreetmap.org/wiki/Map_features
https://martinfleischmann.net/

5 rows × 27 columns

name amenity geometry nodes building

element_type osmid

way 442595762

NaN NaN

POLYGON
((-3.66377
40.46317,
-3.66363

40.46322...

[4402722774,
4402722775,
4402722776,
440272277...

yes

442595763 NaN NaN

POLYGON
((-3.66394
40.46346,
-3.66415

40.46339...

[4402722778,
4402722779,
4402722780,
440272278...

yes

442595764 NaN NaN

POLYGON
((-3.66379
40.46321,
-3.66401

40.46314...

[4402722782,
4402722783,
4402722784,
440272278...

yes

442595765 NaN NaN

POLYGON
((-3.66351
40.46356,
-3.66294

40.46371...

[4402722786,
4402722787,
4402722788,
440272278...

yes

442596830 NaN NaN

POLYGON
((-3.66293
40.46289,
-3.66281

40.46294...

[4402729658,
4402729659,
4402729660,
440272966...

yes

<class 'geopandas.geodataframe.GeoDataFrame'>
MultiIndex: 115 entries, ('way', 442595762) to ('way', 577690922)
Data columns (total 27 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 name 2 non-null object
 1 amenity 2 non-null object
 2 geometry 115 non-null geometry
 3 nodes 115 non-null object
 4 building 115 non-null object
 5 addr:housenumber 21 non-null object
 6 addr:postcode 3 non-null object
 7 addr:street 9 non-null object
 8 denomination 1 non-null object
 9 phone 2 non-null object
 10 religion 1 non-null object
 11 source 1 non-null object
 12 source:date 1 non-null object
 13 url 1 non-null object
 14 wheelchair 1 non-null object
 15 building:levels 11 non-null object
 16 addr:city 8 non-null object
 17 addr:country 6 non-null object
 18 wikidata 1 non-null object
 19 website 1 non-null object
 20 country 1 non-null object
 21 diplomatic 1 non-null object
 22 name:en 1 non-null object
 23 name:fr 1 non-null object
 24 name:ko 1 non-null object
 25 office 1 non-null object
 26 target 1 non-null object
dtypes: geometry(1), object(26)
memory usage: 29.7+ KB

blgs.head()

If you want to visit the entity online, you can do so at:

https://www.openstreetmap.org/<unique_id>

Extract the building footprints for the Sol neighbourhood in neis

Other polygons

_build/jupyter_execute/content/pages/06-OpenStreetMap_32_0.png

Points of interest

Bars around Atocha station:

We can quickly explore with GeoJSON:

Challenge

park = ox.features_from_place(
 "Parque El Retiro, Madrid", tags={"leisure": "park"}
)

ax = park.plot(
 facecolor="none", edgecolor="blue", linewidth=2
)
contextily.add_basemap(
 ax,
 crs=smallest.crs,
 source=contextily.providers.OpenStreetMap.Mapnik
);

bars = ox.features_from_address(
 "Puerta de Atocha, Madrid", tags={"amenity": "bar"}, dist=1500
)

Data
If you have an earlier version of geopandas
than 0.10, you can obtain a similar map with:

GeoJSON(bars.__geo_interface__)

bars.explore()

And stores within Malasaña:

We use features_from_place for delineated areas (“polygonal entities”):

Similarly, we can work with location data. For example, searches around a given point:

Make this Notebook Trusted to load map: File -> Trust Notebook+
−

1 km

3000 ft Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

shops = ox.features_from_address(
 "Malasaña, Madrid, Spain", # Boundary to search within
 tags={
 "shop": True,
 "landuse": ["retail", "commercial"],
 "building": "retail"
 },
 dist=1000
)

cs = ox.features_from_place(
 "Madrid, Spain",
 tags={"amenity": "charging_station"}
)
cs.explore()

Make this Notebook Trusted to load map: File -> Trust Notebook+
−

10 km

5 mi Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright
https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

How many music shops does OSM record within 750 metres of Puerta de Alcalá?
Are there more restaurants or clothing shops within the polygon that represents the Pacífico neighbourhood in neis table?

Streets

Street data can be obtained as another type of entity, as above; or as a graph object.

Geo-tables

We can get a quick peak into what is returned (grey), compared to the region we used for the query:

_build/jupyter_execute/content/pages/06-OpenStreetMap_51_0.png

This however will return all sorts of things:

bakeries = ox.features_from_point(
 (40.418881103417675, -3.6920446157455444),
 tags={"shop": "bakery", "craft": "bakery"},
 dist=500
)
GeoJSON(bakeries.__geo_interface__)

<IPython.display.GeoJSON object>

Challenge

centro = ox.features_from_polygon(
 neis.query("neighbourhood == 'Sol'").squeeze().geometry,
 tags={"highway": True}
)

ax = neis.query(
 "neighbourhood == 'Sol'"
).plot(color="k")
centro.plot(
 ax=ax,
 color="0.5",
 linewidth=0.2,
 markersize=0.5
);

centro.geometry

Spatial graphs

This returns clean, processed graph objects for the street network:

And to visualise it:

_build/jupyter_execute/content/pages/06-OpenStreetMap_61_0.png

element_type osmid
node 21734214 POINT (-3.70427
40.41662)
 21734250 POINT (-3.70802
40.41612)
 21734252 POINT (-3.70847
40.41677)
 21968134 POINT (-3.69945
40.41786)
 21968197 POINT (-3.70054
40.41645)
 ...
way 907553665 LINESTRING (-3.70686 40.41380, -3.70719
40.41369)
 909056211 LINESTRING (-3.70705 40.42021, -3.70680
40.42020)
relation 5662178 POLYGON ((-3.70948 40.41551, -3.70952
40.41563...
 7424032 POLYGON ((-3.70263 40.41712, -3.70253
40.41714...
 8765884 POLYGON ((-3.70636 40.41475, -3.70635
40.41481...
Name: geometry, Length: 609, dtype: geometry

[i for i in dir(ox) if

['graph_from_address',
 'graph_from_bbox',
 'graph_from_gdfs',
 'graph_from_place',
 'graph_from_point',
 'graph_from_polygon',
 'graph_from_xml']

centro_gr = ox.graph_from_polygon(
 neis.query("neighbourhood == 'Sol'").squeeze().geometry,
)

centro_gr

<networkx.classes.multidigraph.MultiDiGraph at 0x7fb37850c610>

[i for i in dir(ox) if

['plot_graph', 'plot_g
'plot_graph_routes']

ox.plot_figure_ground(centro_gr);

(
 ox.graph_to_gdfs(centro_gr, nodes=False)
 .explore()
)

How many bookshops are within a 50m radious of the Paseo de la Castellana?

Bonus tip: this one involves the following steps:

Extracting the street segment for Paseo de la Castellana

Drawing a 50m buffer around it

Querying OSM for bookshops

🐾 Next steps

If you found the content in this block useful, the following resources represent some suggestions on where to go next:

Parts of the block are inspired and informed by Geoff Boeing’s excellent course on Urban Data Science

More in depth content about osmnx is available in the official examples collection

Boeing (2020) [Boe20] illustrates how OpenStreetMap can be used to analyse urban form (Open Access)

Transport costs

📖 Ahead of time…

💻 Hands-on coding

Make this Notebook Trusted to load map: File -> Trust Notebook+
−

300 m

1000 ft Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

Challenge

import momepy
import geopandas
import contextily
import xarray, rioxarray
import osmnx as ox
import numpy as np
import matplotlib.pyplot as plt

ox.settings.overpass_settings = (
 '[out:json][timeout:90][date:"2021-03-07T00:00:00Z"]'
)

Local files Online read

https://github.com/gboeing/ppd599
https://github.com/gboeing/osmnx-examples
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id2
https://osf.io/preprints/socarxiv/rnwgv/
https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

pandana graphs

Before building the routing network, we convert to graph and back in momepy to “clean” the network and ensure it complies with

requirements for routing.

Once we have nodes and edges “clean” from the graph representation, we can build a pandana.Network object we will use for routing:

Shortest-path routing

How do I go from A to B?

For example, from the first Airbnb in the geo-table…

…to Puerta del Sol.

Assuming you have the file locally on the path ../data/:

streets = geopandas.read_file("../data/arturo_streets.gpkg")
abbs = geopandas.read_file("../data/madrid_abb.gpkg")
neis = geopandas.read_file("../data/neighbourhoods.geojson")

import pandana

%%time
nodes, edges = momepy.nx_to_gdf(# Convert back to geo-table
 momepy.gdf_to_nx(# Convert to a clean NX graph
 streets.explode(index_parts='True') # We "explode" to
avoid multi-part rows
)
)
nodes = nodes.set_index("nodeID")# Reindex nodes on ID

CPU times: user 3.2 s, sys: 76.5 ms, total: 3.27 s
Wall time: 3.24 s

streets_pdn = pandana.Network(
 nodes.geometry.x,
 nodes.geometry.y,
 edges["node_start"],
 edges["node_end"],
 edges[["mm_len"]]
)

streets_pdn

Generating contraction hierarchies with 16 threads.
Setting CH node vector of size 49985
Setting CH edge vector of size 66499
Range graph removed 444 edges of 132998
. 10% . 20% . 30% . 40% . 50% . 60% . 70% . 80% . 90% . 100%

<pandana.network.Network at 0x7fbbc3db5d00>

first = abbs.loc[[0], :].to_crs(streets.crs)

geometry address

0 POINT (440247.314 4474264.131) Puerta del Sol, Barrio de los Austrias, Sol, C...

First we snap locations to the network:

Then we can route the shortest path:

With this information, we can build the route line manually:

import geopy
geopy.geocoders.options.default_user_agent = "gds4ae"
sol = geopandas.tools.geocode(
 "Puerta del Sol, Madrid", geopy.Nominatim
).to_crs(streets.crs)
sol

pt_nodes = streets_pdn.get_node_ids(
 [first.geometry.x.iloc[0], sol.geometry.x.iloc[0]],
 [first.geometry.y.iloc[0], sol.geometry.y.iloc[0]]
)
pt_nodes

0 3071
1 35731
Name: node_id, dtype: int64

route_nodes = streets_pdn.shortest_path(
 pt_nodes[0], pt_nodes[1]
)
route_nodes

array([3071, 3476, 8268, 8266, 8267, 18695, 18693, 1432, 1430,
 353, 8175, 8176, 18121, 17476, 16858, 14322, 16857, 17810,
 44795, 41220, 41217, 41221, 41652, 18924, 18928, 48943, 18931,
 21094, 21095, 23219, 15398, 15399, 15400, 47446, 47447, 23276,
 47448, 23259, 23260, 23261, 27951, 27952, 27953, 48327, 11950,
 11949, 11944, 19475, 19476, 27333, 30088, 43294, 11940, 11941,
 11942, 48325, 37484, 48316, 15893, 15890, 15891, 29954, 25453,
 7341, 34991, 23608, 28217, 21648, 21649, 21651, 39075, 25108,
 25102, 25101, 25100, 48518, 47287, 34623, 31187, 29615, 48556,
 22844, 48553, 48555, 40922, 40921, 40923, 48585, 46372, 46371,
 46370, 45675, 45676, 38778, 38777, 19144, 20498, 20497, 20499,
 47737, 42303, 42302, 35730, 35727, 35729, 35731])

The code to generate the route
involves writing a function and is a
bit more advanced than expected for
this course. If this looks too
complicated, do not despair.
Also, please note this builds a
simplified line for the route, not one
that is based on the original
geometries (distance calculations
are based on the original network).

Attention

We can calculate the route:

And we get it back as a geo-table (with one row):

src_node tgt_node geometry

0 3071 3476 LINESTRING (442606.507 4478714.516, 442597.100...

If we wanted to obtain the length of the route:

What is the network distance between CEMFI and Puerta del Sol?

BONUS I: how much longer is it than if you could fly in a straight line?

BONUS II: if one walks at a speed of 5 Km/h, how long does the walk take you?

Weighted routing

How do I go from A to B passing by the “best” buildings?

This is really an extension of standard routing that takes advantage of the flexibility of pandana.Network objects.

The overall process is the same; the main difference is, when we build the Network object, to replace distance

(mm_len) with a measure that combines distance and building quality. Note that we want to maximise building

quality, but the routing algorithms use a minimisation function. Hence, our composite index will need to reflect that.

The strategy is divided in the following steps:

1. Re-scale distance between 0 and 1

2. Build a measure inverse to building quality in the \([0, 1]\) range

3. Generate a combined measure (wdist) by picking a weighting parameter

4. Build a new Network object that incorporates wdist instead of distance

5. Compute route between the two points of interest

For 1., we can use the scaler in scikit-learn:

from shapely.geometry import LineString

def route_nodes_to_line(nodes, network):
 pts = network.nodes_df.loc[nodes, :]
 s = geopandas.GeoDataFrame(
 {"src_node": [nodes[0]], "tgt_node": [nodes[1]]},
 geometry=[LineString(pts.values)],
 crs=streets.crs
)
 return s

route = route_nodes_to_line(route_nodes, streets_pdn)

_build/jupyter_execute/co

route

route_len = streets_pdn.shortest_path_length(
 pt_nodes[0], pt_nodes[1]
)
round(route_len / 1000, 3) # Dist in Km

5.514

Challenge

_build/jupyter_execute/co

Then generate and attach to edges a scaled version of mm_len:

We move on to 2., with a similar approach. We will use the negative of the building quality average

(average_quality):

Taking 1. and 2. into 3. we can build wdist. For this example, we will give each dimension the same weight (0.5),

but this is at discretion of the researcher.

Now we can recreate the Network object based on our new measure (4.) and provide routing. Since it is the same process as with

distance, we will do it all in one go:

Now we are ready to display it on a map:

from sklearn.preprocessing import minmax_scale

edges["scaled_dist"] = minmax_scale(edges["mm_len"])

_build/jupyter_execute/co

edges["scaled_inv_bquality"] = minmax_scale(
 -edges["average_quality"]
)

_build/jupyter_execute/co

w = 0.5
edges["wdist"] = (
 edges["scaled_dist"] * w +
 edges["scaled_inv_bquality"] * (1-w)
)

Build new graph object
w_graph = pandana.Network(
 nodes.geometry.x,
 nodes.geometry.y,
 edges["node_start"],
 edges["node_end"],
 edges[["wdist"]]
)
Snap locations to their nearest node
pt_nodes = w_graph.get_node_ids(
 [first.geometry.x.iloc[0], sol.geometry.x.iloc[0]],
 [first.geometry.y.iloc[0], sol.geometry.y.iloc[0]]
)
Generate route
w_route_nodes = w_graph.shortest_path(
 pt_nodes[0], pt_nodes[1]
)
Build LineString
w_route = route_nodes_to_line(
 w_route_nodes, w_graph
)

Generating contraction hierarchies with 16 threads.
Setting CH node vector of size 49985
Setting CH edge vector of size 66499
Range graph removed 444 edges of 132998
. 10% . 20% . 30% . 40% . 50% . 60% . 70% . 80% . 90% . 100%

_build/jupyter_execute/content/pages/07-Transport_costs_49_0.png

1. Explore the differences in the output of weighted routing if you change the weight between distance and the additional

constrain.

2. Recreate weighted routing using the linearity of street segments. How can you go from A to B avoiding long streets?

Proximity

What is the nearest internet cafe for Airbnb’s without WiFi?

First we identify Airbnb’s without WiFi:

Then pull WiFi spots in Madrid from OpenStreetMap:

_build/jupyter_execute/content/pages/07-Transport_costs_57_0.png

The logic for this operation is the following:

Building quality
ax = streets.plot(
 "average_quality",
 scheme="quantiles",
 cmap="magma",
 linewidth=0.5,
 figsize=(9, 9)
)
Shortest route
route.plot(
 color="xkcd:orange red", linewidth=3, ax=ax, label="Shortest"
)
Weighted route
w_route.plot(
 color="xkcd:easter green", linewidth=3, ax=ax, label="Weighted"
)
Styling
ax.set_axis_off()
plt.legend();

Challenge

no_wifi = abbs.query(
 "WiFi == '0'"
).to_crs(streets.crs)

icafes = ox.features_from_place(
 "Madrid, Spain", tags={"amenity": "internet_cafe"}
).to_crs(streets.crs).reset_index()

ax = no_wifi.plot(
 color="red",
 markersize=1,
 alpha=0.5,
 label="Airbnb no WiFi",
 figsize=(9, 9)
)
icafes.plot(
 ax=ax, color="lime", label="Internet cafes"
)
contextily.add_basemap(
 ax,
 crs=no_wifi.crs,
 source=contextily.providers.CartoDB.Voyager
)
ax.set_axis_off()
plt.legend()
plt.show()

1. Add the points of interest (POIs, the internet cafes) to the network object (streets_pdn)

2. Find the nearest node to each POI

3. Find the nearest node to each Airbnb without WiFi

4. Connect each Airbnb to its nearest internet cafe

We can add the internet cafes to the network object (1.) with the set_pois method:

Once the cafes are added to the network, we can find the nearest one to each node (2.):

dist2icafe poi1 osmid name

nodeID

0 5101.421875 9.0 3.770327e+09 Silver Envíos 2

1 5190.265137 9.0 3.770327e+09 Silver Envíos 2

2 5252.475098 9.0 3.770327e+09 Silver Envíos 2

3 5095.101074 9.0 3.770327e+09 Silver Envíos 2

4 5676.117188 9.0 3.770327e+09 Silver Envíos 2

Note that, to make things easier down the line, we can link cafe2nnode to the cafe IDs.

And we can also link Airbnb’s to nodes (3.) following a similar approach as we have seen above:

Note we set maxitems=1 because we are only
going to query for the nearest cafe. This will
make computations much faster

streets_pdn.set_pois(
 category="Internet cafes", # Our name for the layer in the `Network`
object
 maxitems=1, # Use to count only nearest cafe
 maxdist=100000, # 100km so everything is included
 x_col=icafes.geometry.x, # X coords of cafes
 y_col=icafes.geometry.y, # Y coords of cafes
)

Note there are some nodes for which we can’t
find a nearest cafe. These are related to
disconnected parts of the network

cafe2nnode = streets_pdn.nearest_pois(
 100000, # Max distance to look for
 "Internet cafes", # POIs to look for
 num_pois=1, # No. of POIs to include
 include_poi_ids=True # Store POI ID
).join(# Then add the internet cafee IDs and name
 icafes[['osmid', 'name']],
 on="poi1"
).rename(# Rename the distance from node to cafe
 columns={1: "dist2icafe"}
)
cafe2nnode.head()

abbs_nnode = streets_pdn.get_node_ids(
 no_wifi.geometry.x, no_wifi.geometry.y
)
abbs_nnode.head()

Finally, we can bring together both to find out what is the nearest internet cafe for each Airbnb (4.):

geometry nnode dist2icafe poi1 osmid name

26 POINT (443128.256
4483599.841)

8872 4926.223145 9.0 3.770327e+09 Silver
Envíos 2

50 POINT (441885.677
4475916.602)

10905 1876.392944 19.0 6.922981e+09 Locutorio

62 POINT (440439.640
4476480.771)

41158 1164.812988 17.0 5.573414e+09 NaN

63 POINT (438485.311
4471714.377)

34257 1466.537964 5.0 2.304485e+09 NaN

221 POINT (439941.104
4473117.914)

32215 354.268005 15.0 5.412145e+09 NaN

Calculate distances to nearest internet cafe for ABBs with WiFi. On average, which of the two groups (with and without WiFi)

are closer to internet cafes?

Accessibility

This flips the previous question on its head and, instead of asking what is the nearest POI to a given point, along the network

(irrespective of distance), it asks how many POIs can I access within a network-based distance radious?

How many parks are within 500m(-euclidean) of an Airbnb?

We draw a radious of 500m around each AirBnb:

26 8872
50 10905
62 41158
63 34257
221 32215
Name: node_id, dtype: int64

abb_icafe = no_wifi[
 ["geometry"] # Keep only geometries of ABBs w/o WiFi
].assign(
 nnode=abbs_nnode # Attach to thse ABBs the nearest node in the
network
).join(# Join to each ABB the nearest cafe using node IDs
 cafe2nnode,
 on="nnode"
)
abb_icafe.head()

Challenge

%%time
parks = ox.features_from_place(
 "Madrid, Spain", tags={"leisure": "park"}
).to_crs(streets.crs)

CPU times: user 382 ms, sys: 461 µs, total: 382 ms
Wall time: 385 ms

Then intersect it with the location of parks, and count by buffer (ie. Airbnb):

How many parks are within 500m(-network) of an Airbnb?

We need to approach this as a calculation within the network. The logic of steps thus looks like:

1. Use the aggregation module in pandana to count the number of parks within 500m of each node in the network

2. Extract the counts for the nodes nearest to Airbnb properties

3. Assign park counts to each Airbnb

We can set up the aggregate engine (1.). This involves three steps:

a. Obtain nearest node for each park

b. Insert the parks’ nearest node through set so it can be “aggregated”

c. “Aggregate” for a distance of 500m, effectively counting the number of parks within 500m of each node

At this point, we have the number of parks within 500m of every node in the network. To identify those that correspond to each Airbnb

(3.), we first pull out the nearest nodes to each ABB:

And use the list to asign the count of the nearest node to each Airbnb:

buffers = geopandas.GeoDataFrame(
 geometry=abbs.to_crs(
 streets.crs
).buffer(
 500
)
)

park_count = geopandas.sjoin(
 parks, buffers
).groupby(
 "index_right"
).size()

parks_nnode = streets_pdn.get_node_ids(
 parks.centroid.x, parks.centroid.y
)

streets_pdn.set(
 parks_nnode, name="Parks"
)

parks_by_node = streets_pdn.aggregate(
 distance=500, type="count", name="Parks"
)
parks_by_node.head()

nodeID
0 5.0
1 5.0
2 6.0
3 8.0
4 1.0
dtype: float64

abbs_xys = abbs.to_crs(streets.crs).geometry
abbs_nnode = streets_pdn.get_node_ids(
 abbs_xys.x, abbs_xys.y
)

For which areas do both differ most?

We can compare the two counts above to explore to what extent the street layout is constraining access to nearby parks.

_build/jupyter_execute/content/pages/07-Transport_costs_91_0.png

And, geographically:

park_count_network = abbs_nnode.map(
 parks_by_node
)
park_count_network.head()

0 4.0
1 9.0
2 5.0
3 0.0
4 12.0
Name: node_id, dtype: float64

park_comp = geopandas.GeoDataFrame(
 {
 "Euclidean": park_count,
 "Network": park_count_network
 },
 geometry=abbs.geometry,
 crs=abbs.crs
)

ax = park_comp.plot.scatter("Euclidean", "Network")
ax.axline([0, 0], [1, 1], color='red');# 45deg line

Note there are a few cases where there are
more network counts than Euclidean. These
are due to the slight inaccuracies introduced by
calculating network distances from nodes
rather than the locations themselves

f, axs = plt.subplots(1, 3, figsize=(15, 5))

Euclidean count
abbs.to_crs(
 streets.crs
).assign(
 n_parks=park_count
).fillna(0).plot(
 "n_parks",
 scheme="fisherjenkssampled",
 alpha=0.5,
 markersize=1,
 figsize=(9, 9),
 legend=True,
 ax=axs[0]
)
contextily.add_basemap(
 axs[0],
 crs=streets.crs,
 source=contextily.providers.CartoDB.PositronNoLabels
)
axs[0].set_axis_off()
axs[0].set_title("Euclidean Distances")

Count difference
with_parks = park_comp.query(
 "(Network > 0) & (Euclidean > 0)"
)
count_diff = 100 * (
 with_parks["Euclidean"] -
 with_parks["Network"]
) / with_parks["Euclidean"]
abbs.to_crs(
 streets.crs
).assign(
 n_parks=count_diff
).dropna().plot(
 "n_parks",
 scheme="fisherjenkssampled",
 alpha=0.5,
 markersize=1,
 figsize=(9, 9),
 legend=True,
 ax=axs[1]
)
contextily.add_basemap(
 axs[1],
 crs=streets.crs,
 source=contextily.providers.CartoDB.PositronNoLabels
)
axs[1].set_axis_off()
axs[1].set_title("Count Difference (%)")

Network count
abbs.to_crs(
 streets.crs
).assign(
 n_parks=park_count_network
).fillna(0).plot(
 "n_parks",
 scheme="fisherjenkssampled",
 alpha=0.5,
 markersize=1,
 figsize=(9, 9),
 legend=True,
 ax=axs[2]
)
contextily.add_basemap(
 axs[2],
 crs=streets.crs,
 source=contextily.providers.CartoDB.PositronNoLabels
)
axs[2].set_axis_off()
axs[2].set_title("Network Distances")

plt.show()

_build/jupyter_execute/content/pages/07-Transport_costs_93_0.png

Calculate accessibility to other ABBs from each ABB through the network. How many ABBs can you access within 500m of
each ABB?

Note you will need to use the locations of ABBs both as the source and the target for routing in this case.

🐾 Next steps

If you found the content in this block useful, the following resources represent some suggestions on where to go next:

The pandana tutorial and documentation are excellent places to get a more detailed and comprehensive view into the functionality

of the library

Web mapping with CARTO

📖 Ahead of time…

REQUIRED You will need to have a (free) account with CARTO to complete this session.

There are several ways of obtaining a free account. The recommended one is to sign up for CARTO for education. Follow the steps

provided in the link, which boil down to:

1. Sign up for Github (if you do not have an account already)

2. Apply for the Github Education Pack

3. Wait for verification and confirm. This could take from 1h to several days.

4. Claim your CARTO student account

IMPORTANT Do not sign up for a free trial, as this is limited to a couple of weeks

💻 Hands-on

In this session, we will explore the CARTO platform. This will be a whirlwind tour of some of the main things you can do within the

platform, and its potential.

Data

Challenge

Important

Danger

Please refer to the lecture demo for
details on how to do achieve the
goals outlined in this page.

Note

https://github.com/UDST/pandana/blob/master/examples/Pandana-demo.ipynb
http://udst.github.io/pandana/index.html
https://docs.carto.com/faqs/carto-for-education
https://carto.com/

For this overview, we will use the dataset of Cambodian regions we have used earlier in the course.

Workflow

Data ingestion

Data Explorer

Import data (remote link)

Regions

Cities

My first map

Map Vs data pages

Create a map

Parts of Builder

Map view

Sources

Layers

Control tabs

Layer properties

Widgets

Interactions

Legend

Basemap

Perspective

Interactivity

Pan, zoom

Tooltips

Widgets

Choropleths

Color palettes

Algorithms

3D

Enable 3D

Publishing and sharing

Publish

Publish updates

Challenge

You can access the data file here.

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#data-cam-friction-reg
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/9366d230310a8a68b2ce6cf2787a2f1c/cambodia_regional.gpkg

Pick a dataset from the GDS Book (or an alternative dataset you’re familiar with) and replicate the workflow above to make a map.

🐾 Next steps

Datasets
This section covers the datasets required to run the course interactively. For archival reasons, all of those listed here have been

mirrored in the repository for this course so, if you have downloaded the course, you already have a local copy of them.

Madrid

Airbnb properties

This dataset has been sourced from the course “Spatial Modelling for Data Scientists”. The file imported here corresponds to

the v0.1.0 version.

This dataset contains a pre-processed set of properties advertised on the AirBnb website within the region of Madrid (Spain), together

with house characteristics.

🗃 Data file madrid_abb.gpkg

🤖 Code used to generate the file [URL]

ℹ Furhter information [URL]

This dataset is licensed under a CC0 1.0 Universal Public Domain Dedication.

Airbnb neighbourhoods

This dataset has been directly sourced from the website Inside Airbnb. The file was imported on February 10th 2021.

This dataset contains neighbourhood boundaries for the city of Madrid, as provided by Inside Airbnb.

🗃 Data file neighbourhoods.geojson

ℹ Furhter information [URL]

This dataset is licensed under a CC0 1.0 Universal Public Domain Dedication.

Arturo

This dataset contains the street layout of Madrid as well as scores of habitability, where available, associated with street segments. The

data originate from the Arturo Project, by 300,000Km/s, and the available file here is a slimmed down version of their official street

layout distributed by the project.

You can find the datasets from the book at the
bottom of the side bar. Each dataset includes a
direct link to the file at the bottom of its page.

Source

Source

https://geographicdata.science/book/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#github-repo
https://gdsl-ul.github.io/san/
https://github.com/GDSL-UL/san/releases/tag/v0.1.0
https://github.com/GDSL-UL/san/raw/v0.1.0/data/assignment_1_madrid/madrid_abb.gpkg
https://github.com/GDSL-UL/san/blob/v0.1.0/data/assignment_1_madrid/clean_data.ipynb
https://github.com/GDSL-UL/san/blob/v0.1.0/docs/11-datasets.md#madrid-airbnb
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://insideairbnb.com/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/44b4bc22c042386c2c0f8dc6685ef17c/neighbourhoods.geojson
http://insideairbnb.com/madrid/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://arturo.300000kms.net/
https://300000kms.net/
http://arturo.300000kms.net/#10
https://geographicdata.science/book/data/README.html

🗃 Data file arturo_streets.gpkg

🤖 Code used to generate the file [Page]

ℹ Furhter information [URL]

This dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sentinel 2 - 120m mosaic

This dataset contains four scenes for the region of Madrid (Spain) extracted from the Digital Twin Sandbox Sentinel-2 collection, by the

SentinelHub. Each scene corresponds to the following dates in 2019:

January 1st

April 1st

July 10th

November 17th

Each scene includes red, green, blue and near-infrared bands.

🗃 Data files (Jan 1st, Apr 1st, Jul 10th, Nov 27th)

🤖 Code used to generate the file [Page]

ℹ Furhter information [URL]

This dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sentinel 2 - 10m GHS composite

This dataset contains a scene for the region of Madrid (Spain) extracted from the GHS Composite S2, by the European Commission.

🗃 Data file madrid_scene_s2_10_tc.tif

🤖 Code used to generate the file [Page]

ℹ Furhter information [URL]

This dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Cambodia

Pollution

Surface with \(NO_2\) measurements (tropospheric column) information attached from Sentinel 5.

🗃 Data file cambodia_s5_no2.tif

🤖 Code used to generate the file [Page]

ℹ Furhter information [URL]

Friction surfaces

This dataset is an extraction of the following two data products by Weiss et al. (2020) [WNVR+20] and distributed through the Malaria

Atlas Project:

Global friction surface enumerating land-based travel walking-only speed without access to motorized transport for a nominal year

2019 (Minutes required to travel one metre)

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/67d5480f98453027d59bf49606a7ad92/arturo_streets.gpkg
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/arturo_streets_prep
https://arturo.300000kms.net/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://medium.com/sentinel-hub/digital-twin-sandbox-sentinel-2-collection-available-to-everyone-20f3b5de846e
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/da949a403ddbc1fab3602ee944ee4ea2/madrid_scene_s2_120_2019-1-1.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/b7233f1b024dc18693ea9fc4f2c85895/madrid_scene_s2_120_2019-4-1.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/45e42fc50bf4cddbcaed2c435696115e/madrid_scene_s2_120_2019-7-10.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/98fa58758109deb8bd198dafc03f8fe7/madrid_scene_s2_120_2019-11-27.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/madrid_s2
https://github.com/sentinel-hub/public-collections/tree/main/collections/sentinel-s2-l2a-mosaic-120
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://ghsl.jrc.ec.europa.eu/ghs_s2composite.php
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/cafed4de0cfde63e6d2ffcb92264b431/madrid_scene_s2_10_tc.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/madrid_s2
https://ghsl.jrc.ec.europa.eu/ghs_s2composite.php
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/0d14506cd792aecf73dd0f7f027e95b4/cambodia_s5_no2.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/cambodia_pollution
https://github.com/Sentinel-5P/data-on-s3
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id7
https://malariaatlas.org/explorer/#/

Global friction surface enumerating land-based travel speed with access to motorized transport for a nominal year 2019 (Minutes

required to travel one metre)

Each is provided on a separate file.

🗃 Data files (Motorized and Walking)

🤖 Code used to generate the file [Page]

ℹ Furhter information [URL]

Regional aggregates

This dataset relies on boundaries from the Humanitarian Data Exchange. The file is provided by the World Food Programme

through the Humanitarian Data Exchange and was accessed on February 15th 2021.

Pollution and friction aggregated at Level 2 (municipality) administrative boundaries for Cambodia.

🗃 Data file cambodia_regional.gpkg

🤖 Code used to generate the file [Page]

This dataset is licensed under a Creative Commons Attribution 4.0 International License.

Cambodian cities

Extract from the Urban Centre Database (UCDB), version 1.2, of the centroid for Cambodian cities.

🗃 Data file cambodian_cities.geojson

🤖 Code used to generate the file [Page]

ℹ Furhter information [URL]

This dataset is licensed under a Creative Commons Attribution 4.0 International License.

Further Resources
If this course is successful, it will leave you wanting to learn more about using Python for (Geographic) Data Science. See below a few

resources that are good “next steps”.

Courses

The “Automating GIS processes”, by Vuokko Heikinheimo and Henrikki Tenkanen is a great overview of GIS with a modern Python

stack:

https://autogis-site.readthedocs.io/

The “GDS Course” by Dani Arribas-Bel [AB19] is an introductory level overview of Geographic Data Science, including notebooks,

slides and video clips.

https://darribas.org/gds_course

Source

file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/f41b238a4d072a8a3eb5ce1794cd126a/cambodia_2020_motorized_friction_surface.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/481f40ab3d2922d5e00b084b3668314b/cambodia_2020_walking_friction_surface.tif
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/cambodia_road_friction
https://malariaatlas.org/
https://data.humdata.org/
https://data.humdata.org/dataset/wfp-geonode-cambodia-admin-boundaries-level-2-districts?force_layout=desktop
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/9366d230310a8a68b2ce6cf2787a2f1c/cambodia_regional.gpkg
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/cambodia_regional
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/_downloads/b2bc4ad46ffb5fcec467286c022adf14/cambodian_cities.geojson
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#document-content/data/cambodia_cities
https://ghsl.jrc.ec.europa.eu/ucdb2018visual.php
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://autogis-site.readthedocs.io/en/latest/index.html
file:///home/runner/work/gds4ae/gds4ae/website/_build/html/content/pages/content/pages/home.html#id9
https://darribas.org/gds_course

By Dani Arribas-Bel & Diego Puga

Data Science Studio by Dani Arribas-Bel and Diego Puga is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

ASP19

AB19

Boe20

BAB20

Bre15

McK12

RABWng

RBZ+19

SAB19

WNVR+20

Books

“Python for Geographic Data Analysis”, by Henrikki Tenkanen, Vuokko Heikinheimo and David Whipp:

https://pythongis.org/

“Geographic Data Science in Python”, by Sergio J. Rey, Dani Arribas-Bel and Levi J. Wolf:

https://geographicdata.science

Bibliography
Jennings Anderson, Dipto Sarkar, and Leysia Palen. Corporate editors in the

evolving landscape of openstreetmap. ISPRS International Journal of Geo-
Information, 8(5):232, 2019.

Dani Arribas-Bel. A course on geographic data science. The Journal of Open
Source Education, 2019. doi:https://doi.org/10.21105/jose.00042.

Geoff Boeing. Exploring urban form through openstreetmap data: a visual

introduction. arXiv preprint arXiv:2008.12142, 2020.

Geoff Boeing and Dani Arribas-Bel. Gis and computational notebooks. In John P.

Wilson, editor, The Geographic Information Science & Technology Body of Knowledge.

UCGIS, 2020.

Cynthia Brewer. Designing better Maps: A Guide for GIS users. ESRI press, 2015.

Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy,
and IPython. O'Reilly Media, Inc., 2012.

Sergio J. Rey, Daniel Arribas-Bel, and Levi J. Wolf. Geographic Data Science
with PySAL and the PyData stack. CRC press, forthcoming.

Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng

Huang, Rob Knight, Niema Moshiri, Mai H Nguyen, Sara Brin Rosenthal, Fernando

Pérez, and others. Ten simple rules for writing and sharing computational analyses in

jupyter notebooks. PLoS Comput Biol, 2019.

doi:https://doi.org/10.1371/journal.pcbi.1007007.

Alex Singleton and Daniel Arribas-Bel. Geographic data science. Geographical
Analysis, 2019.

DJ Weiss, A Nelson, CA Vargas-Ruiz, K Gligorić, S Bavadekar, E Gabrilovich,

A Bertozzi-Villa, J Rozier, HS Gibson, T Shekel, and others. Global maps of travel time

to healthcare facilities. Nature Medicine, 26(12):1835–1838, 2020.

http://creativecommons.org/licenses/by-sa/4.0/
http://darribas.org/
https://diegopuga.org/
http://creativecommons.org/licenses/by-sa/4.0/
https://pythongis.org/
https://geographicdata.science/
https://doi.org/https://doi.org/10.21105/jose.00042
https://doi.org/https://doi.org/10.1371/journal.pcbi.1007007

