Geographic Data Science – Lecture V Space, formally Dani Arribas-Bel

Today

- The need to represent space formally
- Spatial weights matrices
 - What
 - Why
 - Types
- The spatial lag
- The Moran Plot

Space, formally

For a statistical method to be **explicitly spatial**, it needs to contain some representation of the geography, or **spatial context**

One of the most common ways is through Spatial Weights Matrices

- (Geo)Visualization: translating numbers into a (visual) language that the human brain *"speaks better"*
- Spatial Weights Matrices: translating geography into a (numerical) language that a computer *"speaks better"*.

Core element in several spatial analysis techniques:

- Spatial autocorrelation
- Spatial clustering / geodemographics
- Spatial regression

W as a formal representation of space

W

 $N \times N$ positive matrix that contains **spatial relations** between all the observations in the sample $w_{ij} = \left\{ egin{array}{c} x > 0 & ext{if i and j are neighbors} \\ 0 & ext{otherwise} \end{array}
ight\}$ $w_{ii} = 0$ by convention

...What is a **neighbor**???

Types of W

A neighbor is "somebody" who is:

- Next door \rightarrow **Contiguity**-based *W*s
- Close \rightarrow **Distance**-based *W*s
- In the same "place" as us \rightarrow **Block** weights
- •

See Anselin & Rey (2014) for an in-detail discussion and more types of W.

Contiguity-based weights

Sharing boundaries to any extent

- Rook
- Queen
- •

Distance-based weights

Weight is (inversely) proportional to distance between observations

• Inverse distance (threshold)

. . .

• KNN (fixed number of neighbors)

Block weights

Weights are assigned based on discretionary rules loosely related to geography

For example:

- LSOAs into MSOAs
- Post-codes within city boundaries
- Counties within states

•

How much of a neighbor?

No neighbors receive zero weight: $w_{ij} = 0$

Neighbors, it depends, w_{ij} can be:

- One $w_{ij} = 1 \rightarrow \frac{\text{Binary}}{\text{Binary}}$
- Some proportion ($0 < w_{ij} < 1$, continuous) which can be a function of:
 - Distance
 - Strength of interaction (e.g. commuting flows, trade, etc.)

•••

Choice of W

Should be based on and reflect the **underlying channels of interaction** for the question at hand. Examples:

- Processes propagated by inmediate contact (e.g. disease contagion) → Contiguity weights
- Accessibility \rightarrow Distance weights
- Effects of county differences in laws → Block weights

Do your own (contiguity) weights time!

I											
1	2	3		1	2	3	4	5	6	7	8
			1	0	1	0	1	0	0	0	0
			2	1	0	1	0	1	0	0	0
4	5	6	3	0	1	0	0	0	1	0	0
			4	1	0	0	0	1	0	1	0
			5	0	1	0	1	0	1	0	1
			6	0	0	1	0	1	0	0	0
7	8	9	7	0	0	0	1	0	0	0	1
			8	0	0	0	0	1	0	1	0
			9	0	0	0	0	0	1	0	1

ŝ

Standardization

In some applications (e.g. spatial autocorrelation) it is common to *standardize W*

The most widely used standardization is **row-based**: divide every element by the sum of the row:

$$ar{w_{ij}} = rac{w_{ij}}{w_{i.}}$$

where w_i is the sum of a row.

The spatial lag

The spatial lag

Product of a spatial weights matrix W and a given variably Y

 $Y_{Sl} = WY$

$$\gamma_{sl} - i = \sum_{j} w_{ij} \gamma_j$$

- Measure that captures the behaviour of a variable in the neighborhood of a given observation *i*.
- If W is standardized, the spatial lag is the average value of the variable in the neighborhood

- Common way to introduce space formally in a statistical framework
- Heavily used in both ESDA and spatial regression to delineate neighborhoods. Examples:
 - Moran's I
 - LISAs
 - Spatial models (lag, error...)

Recapitulation

- Spatial Weights matrices: matrix encapsulation of space
- Different types for different cases
- Useful in many contexts, like the spatial lag and Moran plot, but also many other things!

<a rel="license" href="http://creativecommons.org/licenses"