
lab_02

March 1, 2019

1 Geographic Data Science - Lab 02

Dani Arribas-Bel
This notebook elaborates on the previous session and shows some more advanced tricks that

will allow you to perform data cleaning and processing in cases where the original source data
used are not made available ready for analysis (as we did in the previous session). In particular,
we will show how you can transform data downloaded from the internet into the table you used
to explore population patterns in Liverpool.

Before anything, let us import the libraries we will need:

In [1]: # This ensures visualizations are plotted inside the notebook
%matplotlib inline

import os # This provides several system utilities
import pandas as pd # This is the workhorse of data munging in Python
import seaborn as sns # This allows us to easily and beautifully plot

1.0.1 The Liverpool Census Data Pack

Throughout this notebook (and later on as well), we will use the CDRC’s Census Data Pack for
the city of Liverpool (link) and explore some of the city’s socio-demogaphic characteristics. This
is a large package crafted by the CDRC that brings together several Census tables in a consistent
way for the city of Liverpool. We will only be able to use just a few of them but, since they are
consistently organized, the procedure used should teach you how to explore other variables on
your own. In particular, in this session, we will be using a table that lists population by country
of birth.

The pack is composed of two types of data: tabular and spatial. Tabular data are numerical ta-
bles that contain information relating to many socio-economic variables for different units (areas);
spatial data contains the geometries of the areas in which Liverpool is divided into. Since there
are many variables contained in several tables, that can be linked to more than one geography, the
pack also includes two “compass files” that help you find what you are looking for: one table that
lists and describes the different datasets available; and a much more detailed table that lists and
describes each and every single variable available in the pack.

The remainder assumes you have downloaded and unpacked the data.
IMPORTANT: if you are working on a university lab computer, make sure to store the down-

loaded files (as well as the notebook) in the M: drive. This will ensure it is safe and does not get
erased.

1

http://darribas.org
http://cdrc.ac.uk/
https://data.cdrc.ac.uk/dataset/cdrc-2011-census-data-packs-for-local-authority-district-liverpool-e08000012

Specify the path to the folder in the following cell, so you can correctly run the code without
errors:

In [2]: # Important! You need to specify the path to the data in *your* machine
If you have placed the data folder in the same directory as this notebook,
you would do:
path = 'Liverpool/'
path = '../../../gds18_data/Liverpool/'

Check to see if the path is correct and works. If you have set it
correctly, you should obtain the following list
os.listdir(path)

Out[2]: ['readme.txt',
'metadata.xml',
'variables_description.csv',
'datasets_description.csv',
'tables',
'shapefiles']

IMPORTANT: the paths above might have look different in your computer. See this introduc-
tory notebook for more details about how to set your paths.

1.0.2 Creating the table from the previous notebook

It is not only that data are not ready to analyze when you get a hold on them. Sometimes, there
is not such thing as the dataset to analyze. Instead, what you have is a collection of separated files,
sometimes with different structures, that you need to bring together to begin with. This is one of
the areas where a bit of scripting skills can help you a long way. While in a traditional point-and-
click program like Microsoft Excel or SPSS, you would have to repeat the steps every time you
wanted to incorporate a new dataset, with a bit of Python ninja tricks, you can write code that will
do it for you as many times as you need.

We will begin jumping straight into the analysis of population in Liverpool, organized by
country of birth, at the Local Super Output Area (LSOA) level. Because the Census Data Pack
contains a lot of data and very many different tables, you will have to bear with us and trust
that what we are extracting is exactly the data of interest. This will speed up the process to walk
through the reading, processing and manipulating of a dataset. Once you are familiar with these
skills, the final section goes into how to explore the entire pack with more detail.

To read a “comma separated values” (.csv) file, we can run:

In [3]: lsoa_orig = pd.read_csv(path+'tables/QS203EW_lsoa11.csv', index_col='GeographyCode')
lsoa_orig.head()

Out[3]: QS203EW0001 QS203EW0002 QS203EW0003 QS203EW0004 \
GeographyCode
E01006512 1880 910 766 699
E01006513 2941 2225 2033 1806
E01006514 2108 1786 1632 1503
E01006515 1208 974 910 877

2

begin.html
begin.html

E01006518 1696 1531 1468 1446

QS203EW0005 QS203EW0006 QS203EW0007 QS203EW0008 \
GeographyCode
E01006512 26 21 20 0
E01006513 98 28 101 0
E01006514 44 18 67 0
E01006515 16 5 12 0
E01006518 7 6 9 0

QS203EW0009 QS203EW0010 ... QS203EW0069 \
GeographyCode ...
E01006512 0 0 ... 5
E01006513 0 0 ... 5
E01006514 0 0 ... 19
E01006515 0 0 ... 4
E01006518 0 0 ... 3

QS203EW0070 QS203EW0071 QS203EW0072 QS203EW0073 \
GeographyCode
E01006512 0 5 0 0
E01006513 1 4 7 0
E01006514 2 17 5 0
E01006515 2 2 2 0
E01006518 0 3 4 0

QS203EW0074 QS203EW0075 QS203EW0076 QS203EW0077 QS203EW0078
GeographyCode
E01006512 0 0 0 0 0
E01006513 7 6 1 0 0
E01006514 4 2 2 1 0
E01006515 2 2 0 0 0
E01006518 4 4 0 0 0

[5 rows x 78 columns]

Before we continue with the data, let us have a look at the object lsoa_orig. It is a different
“animal” than we have seen so far:

In [4]: type(lsoa_orig)

Out[4]: pandas.core.frame.DataFrame

It is a “pandas data frame”. Similar to R’s “data.frame” class, it is one of the most essential
data structures in Python for data analysis, and we will use it intensively. Data frames are sophis-
ticated costructs that can perform several advanced tasks and have many properties. We will be
discovering them as we progress on the course but, for now, let us keep in mind they are tables,
indexed on rows and columns that can support mixed data types and can be flexibly manipulated.

Now we have read the file, we can inspect it. For example, to show the first lines of the table:

3

In [5]: lsoa_orig.head()

Out[5]: QS203EW0001 QS203EW0002 QS203EW0003 QS203EW0004 \
GeographyCode
E01006512 1880 910 766 699
E01006513 2941 2225 2033 1806
E01006514 2108 1786 1632 1503
E01006515 1208 974 910 877
E01006518 1696 1531 1468 1446

QS203EW0005 QS203EW0006 QS203EW0007 QS203EW0008 \
GeographyCode
E01006512 26 21 20 0
E01006513 98 28 101 0
E01006514 44 18 67 0
E01006515 16 5 12 0
E01006518 7 6 9 0

QS203EW0009 QS203EW0010 ... QS203EW0069 \
GeographyCode ...
E01006512 0 0 ... 5
E01006513 0 0 ... 5
E01006514 0 0 ... 19
E01006515 0 0 ... 4
E01006518 0 0 ... 3

QS203EW0070 QS203EW0071 QS203EW0072 QS203EW0073 \
GeographyCode
E01006512 0 5 0 0
E01006513 1 4 7 0
E01006514 2 17 5 0
E01006515 2 2 2 0
E01006518 0 3 4 0

QS203EW0074 QS203EW0075 QS203EW0076 QS203EW0077 QS203EW0078
GeographyCode
E01006512 0 0 0 0 0
E01006513 7 6 1 0 0
E01006514 4 2 2 1 0
E01006515 2 2 0 0 0
E01006518 4 4 0 0 0

[5 rows x 78 columns]

Let us also quickly check the dimensions of the table:

In [6]: lsoa_orig.shape

Out[6]: (298, 78)

4

This implies 298 rows by 78 columns. That is a lot of columns, all named under obscure codes.
For now, just trust that the columns we want are:

In [7]: region_codes = ['QS203EW0002', 'QS203EW0032', 'QS203EW0045', \
'QS203EW0063', 'QS203EW0072']

To keep only those with us, we can slice the table using the loc operator:

In [8]: # Select only the columns with names in the list `region_codes`
lsoa_orig_sub = lsoa_orig.loc[:, region_codes]

lsoa_orig_sub.head()

Out[8]: QS203EW0002 QS203EW0032 QS203EW0045 QS203EW0063 QS203EW0072
GeographyCode
E01006512 910 106 840 24 0
E01006513 2225 61 595 53 7
E01006514 1786 63 193 61 5
E01006515 974 29 185 18 2
E01006518 1531 69 73 19 4

Note how we use the operator loc (for locator) on the dataframe, followed by squared brackets
and, inside it, two alternatives:

• We can use : to keep all the elements (rows in this case).
• And we can use a list of strings (or simply one would work too) with the names what we

want to select.

We can further inspect the dataset with an additional command called info, that lists the
names of the columns and how many non-null elements each contains:

In [9]: lsoa_orig_sub.info()

<class 'pandas.core.frame.DataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 5 columns):
QS203EW0002 298 non-null int64
QS203EW0032 298 non-null int64
QS203EW0045 298 non-null int64
QS203EW0063 298 non-null int64
QS203EW0072 298 non-null int64
dtypes: int64(5)
memory usage: 14.0+ KB

[Renaming columns]
IMPORTANT: some of the elements in this part are more advanced hence optional. If you

want to move quickly through the lab, simply run the code cells without paying much attention

5

to what it does. Once you have become more familiar with the rest of the tutorial, return here and
work through the logic.

The table we have compiled contains exactly what we wanted. However, the names of the
columns are a bit unintuitive, to say the least. It would be much handier if we could rename
the columns into something more human readable. The easiest way to do that in pandas is by
creating a dictionary that maps the original name into the desired one, and then applying it to the
DataFrame with the command rename. Let us walk through the steps necessary, one by one:

• Create a dictionary that maps the codes to the names. For this, we can use the list we have
created before (region_variables), and what we have learnt about querying tables, com-
bined with a small for loop.

First we need to bring up the variable names into a separate table (see the final section for more
detail):

In [10]: # Read file with variable descriptions
variables = pd.read_csv(path+'variables_description.csv', index_col=0)

In [11]: # Create a "dictionary" to store names of the variables
and their description
code2name = {}
Set the index to be the code of each variable
lookup_table = variables.set_index('ColumnVariableCode') # Reindex to be able to query
Run over every region code, select its description/name and store it
in the `code2name` dictionary
for code in region_codes:

code2name[code] = lookup_table.loc[code, 'ColumnVariableDescription']
code2name

Out[11]: {'QS203EW0002': 'Europe: Total',
'QS203EW0032': 'Africa: Total',
'QS203EW0045': 'Middle East and Asia: Total',
'QS203EW0063': 'The Americas and the Caribbean: Total',
'QS203EW0072': 'Antarctica and Oceania: Total'}

• Because we know that each of these variables are totals for each group, we can further de-
clutter the names by removing the piece of the string ": Total". A for loop can help us:

In [12]: # Loop over every code in the `code2name` dictionary and chop off
": Total" so the name is shorter and neater
for code in code2name:

code2name[code] = code2name[code].replace(': Total', '')
code2name

Out[12]: {'QS203EW0002': 'Europe',
'QS203EW0032': 'Africa',
'QS203EW0045': 'Middle East and Asia',
'QS203EW0063': 'The Americas and the Caribbean',
'QS203EW0072': 'Antarctica and Oceania'}

6

• With the dictionary in hand, renaming the columns can be done by:

In [13]: # Rename each column in `lsoa_orig_sub` from its code to its name
lsoa_orig_sub = lsoa_orig_sub.rename(columns=code2name)

lsoa_orig_sub.head()

Out[13]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania
GeographyCode
E01006512 24 0
E01006513 53 7
E01006514 61 5
E01006515 18 2
E01006518 19 4

And this is it! The table stored in lsoa_orig_sub is essentially the same as we played with in
the previous session.

1.1 Delving deeper into the Census Data Pack

We started this notebook assuming we already knew what variables in particular we wanted, out
of the hundreds available on the Liverpool Census Data Pack. Unfortunately, that is not always
the case, and sometimes you have to explore an entire dataset by yourself to find what you are
looking for. To dip your toes into the sea of the Census Data Pack, in this section we will walk
through how to systematically identify a variable and extract it.

The folder contains data at different scales. We will be using the Local Super Output Area
(LSOAs). The folder is structured in the following way:

In [14]: # This command lists the files in the folder passed (`path` in this case)
os.listdir(path)

Out[14]: ['readme.txt',
'metadata.xml',
'variables_description.csv',
'datasets_description.csv',
'tables',
'shapefiles']

For now, we will ignore the spatial information contained in the folder shapefiles and focus
on the tables one. If you have a peek at the folder, it contains many files. You can get their names
into a Python list with the following command:

7

In [15]: # Create a list with the names of all the tables available
csvs = os.listdir(path + 'tables')

And count them using the core fuction len, which returns the length of a list:

In [16]: # Obtain the length of the list `csvs`
len(csvs)

Out[16]: 303

That is right, 303 files! Luckily, to navigate that sea of seemingly non-sensical letters, there is a
codebook that explains things a bit. You can open it with a text editor or a spreadsheet program
but, since it is a csv file, we can also ingest it with Python:

In [17]: # Load up the file and set the first column as index
codebook = pd.read_csv(path + 'datasets_description.csv', index_col=0)

Now we have read the file, we can inspect it. For example, to show the first lines of the table:

In [18]: codebook.head()

Out[18]: DatasetTitle
DatasetId
CT0010 Ethnic group write-ins
KS101EW Usual resident population
KS102EW Age structure
KS103EW Marital and civil partnership status
KS104EW Living arrangements

You can use the index chosen to query rows. For example, if we want to see what dataset code
QS203EW corresponds to:

In [19]: # Extract the value for the column `DatasetTitle` and the row `QS203EW`
This is effectively the name of the dataset with that code
codebook.loc['QS203EW', 'DatasetTitle']

Out[19]: 'Country of birth (detailed)'

If we want to see what that dataset contains, there is another file in the folder called
variables_description.csv that has further information. We can bring it in the same way we
did before and, again, we will index it using the first column of the table, the ID of the dataset
where the variable belongs to:

In [20]: variables = pd.read_csv(path+'variables_description.csv', index_col=0)

To have a sense of how large it is, we can call its shape property, which returns the number of
rows and columns, respectively:

In [21]: # Get the dimensions of the table `variables`
variables.shape

8

Out[21]: (2563, 3)

2,563 different variables!!! Let us see what the structure of the table is:

In [22]: variables.head()

Out[22]: ColumnVariableCode ColumnVariableMeasurementUnit \
DatasetId
CT0010 CT00100001 Count
CT0010 CT00100002 Count
CT0010 CT00100003 Count
CT0010 CT00100004 Count
CT0010 CT00100005 Count

ColumnVariableDescription
DatasetId
CT0010 All categories: Ethnic group
CT0010 English/Welsh/Scottish/Northern Irish/British
CT0010 Irish
CT0010 Gypsy or Irish Traveller
CT0010 Other White

If we are interested in exploring the country of birth (code QS203EW), we can subset the table
using loc in a similar way as before. The only difference is that now we do not want to restrict
the column to only one, so we use the colon : instead of a particular name, including thus all the
columns. Let us also save the subset by assigning it to a new object, birth_orig:

In [23]: # Select all the column values for the row `QS203EW`
birth_orig = variables.loc['QS203EW', :]

birth_orig.shape

Out[23]: (78, 3)

To be clear, the table above contains all the variables that the dataset QS203EW is comprised of.
This means that, for every row in this table, there is a column in the actual dataset which, for the
LSOAs, is on the file QS203EW_lsoa11.csv, in the tables folder.

This is still a lot. Arguably, to get a first sense of the data and start exploring it, we do not need
every single disaggregation available. Let us look at the names and codes of the first 25 variables
to see if we can spot any pattern that helps us simplify (note how we now use : first to indicate
we want all the rows):

In [24]: # Select all the rows for the two columns 'ColumnVariableCode' and
'ColumnVariableDescription', and show the top 25
birth_orig.loc[:, ['ColumnVariableCode', 'ColumnVariableDescription']].head(25)

Out[24]: ColumnVariableCode \
DatasetId
QS203EW QS203EW0001

9

QS203EW QS203EW0002
QS203EW QS203EW0003
QS203EW QS203EW0004
QS203EW QS203EW0005
QS203EW QS203EW0006
QS203EW QS203EW0007
QS203EW QS203EW0008
QS203EW QS203EW0009
QS203EW QS203EW0010
QS203EW QS203EW0011
QS203EW QS203EW0012
QS203EW QS203EW0013
QS203EW QS203EW0014
QS203EW QS203EW0015
QS203EW QS203EW0016
QS203EW QS203EW0017
QS203EW QS203EW0018
QS203EW QS203EW0019
QS203EW QS203EW0020
QS203EW QS203EW0021
QS203EW QS203EW0022
QS203EW QS203EW0023
QS203EW QS203EW0024
QS203EW QS203EW0025

ColumnVariableDescription
DatasetId
QS203EW All categories: Country of birth
QS203EW Europe: Total
QS203EW Europe: United Kingdom: Total
QS203EW Europe: United Kingdom: England
QS203EW Europe: United Kingdom: Northern Ireland
QS203EW Europe: United Kingdom: Scotland
QS203EW Europe: United Kingdom: Wales
QS203EW Europe: Great Britain not otherwise specified
QS203EW Europe: United Kingdom not otherwise specified
QS203EW Europe: Guernsey
QS203EW Europe: Jersey
QS203EW Europe: Channel Islands not otherwise specified
QS203EW Europe: Isle of Man
QS203EW Europe: Ireland
QS203EW Europe: Other Europe: Total
QS203EW Europe: Other Europe: EU Countries: Total
QS203EW Europe: Other Europe: EU countries: Member cou...
QS203EW Europe: Other Europe: EU countries: Member cou...
QS203EW Europe: Other Europe: EU countries: Member cou...
QS203EW Europe: Other Europe: EU countries: Member cou...
QS203EW Europe: Other Europe: EU countries: Member cou...

10

QS203EW Europe: Other Europe: EU countries: Member cou...
QS203EW Europe: Other Europe: EU countries: Member cou...
QS203EW Europe: Other Europe: EU countries: Accession ...
QS203EW Europe: Other Europe: EU countries: Accession ...

Note how we have been able to pass a list of variables we wanted to select as columns, and
pandas has returned the dataframe “sliced” with only those, cutting off the rest.

It looks like the variable name follows a hierarchical pattern that dissaggregates by regions of
the world. A sensible first approach might be to start considering only the largest regions. To do
that, we need a list of the variable name for those aggregates since, once we have it, subsetting the
dataframe will be straightforward. There are several ways we can go about it:

• Since there are not that many regions, we can hardcode them into a list, the same we have
used above:

In [25]: region_codes = ['QS203EW0002', 'QS203EW0032', 'QS203EW0045', \
'QS203EW0063', 'QS203EW0072']

[Advanced extension. Optional]

• However, this approach would not get us very far if the list was longer. For that, a much
more useful way is to write a loop that builds the list for us. To do this, we can remember
some of the tricks learnt in the previous session about writing for loops and if statements
and combine them with new ones about working with strings.

In [26]: regions = []
for var in birth_orig['ColumnVariableDescription']:

Split the name of the variable in pieces by ': '
pieces = var.split(': ')
Keep the first one (top hierarchy) and append ': Total'
name = pieces[0] + ': Total'
If the name create matches the variable (exists in the original list),
add the name to the list
if name == var:

regions.append(name)
regions

Out[26]: ['Europe: Total',
'Africa: Total',
'Middle East and Asia: Total',
'The Americas and the Caribbean: Total',
'Antarctica and Oceania: Total']

Let us work slowly by each step of this loop:

• We first create an empty list where we will store the names of the regions.
• We begin a loop over every single row the column containing the names

(ColumnVariableDescription).

11

• For each name, which is a string, we split it in pieces using ": " as the points in the string
where we want to break it, obtaining a list with the resulting pieces. For instance if we have
Europe: Total, we essentially do:

In [27]: 'Europe: Total'.split(': ')

Out[27]: ['Europe', 'Total']

• We keep the first element, as it contains the name we want to maintain.
• In order to build the actual name of the variable, we join it to ": Total", obtaining the string

we want to keep:

In [28]: 'Europe' + ': Total'

Out[28]: 'Europe: Total'

• We then check that the string we have built is the same as the variable we began with. If so,
we save it on the list we created in the beginning. This step is a bit counter-intuitive, but is
done to ensure a) that the name of the variable exists, and b) that it is saved only once.

Now we have the names, we need to convert them into the codes. There are several ways to go
about it, but here we will show one that relies on the indexing capabilities of pandas. Essentially
we take birth_orig and index it on the names of the variables, to then subset it, keeping only
those in our list (the variables we want to retain).

In [29]: # Set the column `ColumnVariableDescription` as the index and keep only those
in the list `regions`
subset = birth_orig.set_index('ColumnVariableDescription').reindex(regions)

subset

Out[29]: ColumnVariableCode \
ColumnVariableDescription
Europe: Total QS203EW0002
Africa: Total QS203EW0032
Middle East and Asia: Total QS203EW0045
The Americas and the Caribbean: Total QS203EW0063
Antarctica and Oceania: Total QS203EW0072

ColumnVariableMeasurementUnit
ColumnVariableDescription
Europe: Total Count
Africa: Total Count
Middle East and Asia: Total Count
The Americas and the Caribbean: Total Count
Antarctica and Oceania: Total Count

Once this is done, all left to do is to retrieve the codes:

12

In [30]: # Convert the column `ColumnVariableCode` in the table `subset`
into a list
region_codes = list(subset['ColumnVariableCode'])

region_codes

Out[30]: ['QS203EW0002', 'QS203EW0032', 'QS203EW0045', 'QS203EW0063', 'QS203EW0072']

Which is the same that we hardcoded originally, only it has been entirely picked up by our
python code, not by a human.

This notebook, as well as the entire set of materials, code, and data included in this course are
available as an open Github repository available at: https://github.com/darribas/gds18

Geographic Data Science’18 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

13

https://github.com/darribas/gds18

	Geographic Data Science - Lab 02
	The Liverpool Census Data Pack
	Creating the table from the previous notebook

	Delving deeper into the Census Data Pack

