
lab_01

March 1, 2019

1 Geographic Data Science - Lab 01

Dani Arribas-Bel

2 Data “munging”

Real world datasets are messy. There is no way around it: datasets have “holes” (missing data),
the amount of formats in which data can be stored is endless, and the best structure to share data
is not always the optimum to analyze them, hence the need to munge them. As has been correctly
pointed out in many outlets (e.g.), much of the time spent in what is called (Geo-)Data Science is
related not only to sophisticated modeling and insight, but has to do with much more basic and
less exotic tasks such as obtaining data, processing, turning them into a shape that makes analysis
possible, and exploring it to get to know their basic properties.

For how labor intensive and relevant this aspect is, there is surprisingly very little published
on patterns, techniques, and best practices for quick and efficient data cleaning, manipulation, and
transformation. In this session, you will use a few real world datasets and learn how to process
them into Python so they can be transformed and manipulated, if necessary, and analyzed. For
this, we will introduce some of the bread and butter of data analysis and scientific computing in
Python. These are fundamental tools that are constantly used in almost any task relating to data
analysis.

This notebook covers the basic and the content that is expected to be learnt by every student.
We use a prepared dataset that saves us much of the more intricate processing that goes beyond
the introductory level the session is aimed at. As a companion to this introduction, there is an
additional notebook (see link on the website page for Lab 01) that covers how the dataset used
here was prepared from raw data downloaded from the internet, and includes some additional
exercises you can do if you want dig deeper into the content of this lab.

In this notebook, we discuss several patterns to clean and structure data properly, including
tidying, subsetting, and aggregating; and we finish with some basic visualization. An additional
extension presents more advanced tricks to manipulate tabular data.

Before we get our hands data-dirty, let us import all the additional libraries we will need, so
we can get that out of the way and focus on the task at hand:

In [5]: # This ensures visualizations are plotted inside the notebook
%matplotlib inline

import os # This provides several system utilities

1

http://darribas.org
http://dictionary.reference.com/browse/munge
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0
https://twitter.com/BigDataBorat/status/306596352991830016

import pandas as pd # This is the workhorse of data munging in Python
import seaborn as sns # This allows us to efficiently and beautifully plot

2.1 Dataset

We will be exploring some of the characteristics of the population in Liverpool. To do that, we will
use a dataset that contains population counts, split by ethnic origin. These counts are aggregated
at the Lower Layer Super Output Area (LSOA from now on). LSOAs are an official Census geog-
raphy defined by the Office of National Statistics that is small enough to create variation within
cities, but large enough also to preserve privacy. For that reason, many data products (Census,
deprivation indices, etc.) use LSOAs as one of their main geographies.

Let us first set the path to the file where we store the data we will use:

In [6]: # Important! You need to specify the path to the data in *your* machine
If you have placed the data folder in the same directory as this notebook,
you would do:
f = 'liv_pop.csv'
f = 'data/liv_pop.csv' # Path to file containing the table

IMPORTANT: the path above might have look different in your computer. See this introduc-
tory notebook for more details about how to set your paths.

Alternatively, you can read this file from its web location too (do not run the following cell if
you want to read the data locally or are currently offline):

In [7]: f = 'http://darribas.org/gds18/content/labs/data/liv_pop.csv'

To read a “comma separated values” (.csv) file, we can run:

In [8]: db = pd.read_csv(f, index_col='GeographyCode') # Read the table in

Let us stop for a minute to learn how we have read the file. Here are the main aspects to keep
in mind:

• We are using the method read_csv from the pandas library, which we have imported with
the alias pd.

• In this form, all that is required is to pass the path to the file we want to read, which in this
case we have created by concatenating two strings. We can see the full path we have used:

In [9]: f

Out[9]: 'http://darribas.org/gds18/content/labs/data/liv_pop.csv'

• The argument index_col is not strictly necessary but allows us to choose one of the columns
as the index of the table. More on indices below.

• We are using read_csv because the file we want to read is in the csv format. However,
pandas allows for many more formats to be read (and written, just replace read by to! For
example, read_csv reads in, to_csv writes out). A full list of formats supported may be
found here.

2

http://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeography#output-area-oa
begin.html
begin.html
http://pandas.pydata.org/pandas-docs/version/0.18.1/io.html

2.2 Data, sliced and diced

Now we are ready to start playing and interrogating the dataset! What we have at our fingertips
is a table that summarizes, for each of the LSOAs in Liverpool, how many people live in each, by
the region of the world where they were born. Now, let us learn a few cool tricks built into pandas
that work out-of-the box with a table like ours.

• Inspecting what it looks like. We can check the top (bottom) X lines of the table by passing
X to the method head (tail). For example, for the top/bottom five lines:

In [10]: db.head()

Out[10]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania
GeographyCode
E01006512 24 0
E01006513 53 7
E01006514 61 5
E01006515 18 2
E01006518 19 4

In [11]: db.tail()

Out[11]: Europe Africa Middle East and Asia \
GeographyCode
E01033764 2106 32 49
E01033765 1277 21 33
E01033766 1028 12 20
E01033767 1003 29 29
E01033768 1016 69 111

The Americas and the Caribbean Antarctica and Oceania
GeographyCode
E01033764 15 0
E01033765 17 3
E01033766 8 7
E01033767 5 1
E01033768 21 6

• Getting an overview of the table:

In [12]: db.info()

3

<class 'pandas.core.frame.DataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 5 columns):
Europe 298 non-null int64
Africa 298 non-null int64
Middle East and Asia 298 non-null int64
The Americas and the Caribbean 298 non-null int64
Antarctica and Oceania 298 non-null int64
dtypes: int64(5)
memory usage: 14.0+ KB

• Getting an overview of the values of the table:

In [13]: db.describe()

Out[13]: Europe Africa Middle East and Asia \
count 298.00000 298.000000 298.000000
mean 1462.38255 29.818792 62.909396
std 248.67329 51.606065 102.519614
min 731.00000 0.000000 1.000000
25% 1331.25000 7.000000 16.000000
50% 1446.00000 14.000000 33.500000
75% 1579.75000 30.000000 62.750000
max 2551.00000 484.000000 840.000000

The Americas and the Caribbean Antarctica and Oceania
count 298.000000 298.000000
mean 8.087248 1.949664
std 9.397638 2.168216
min 0.000000 0.000000
25% 2.000000 0.000000
50% 5.000000 1.000000
75% 10.000000 3.000000
max 61.000000 11.000000

Note how the output is also a DataFrame object, so you can do with it the same things you
would with the original table (e.g. writing it to a file).

In this case, the summary might be better presented if the table is “transposed”:

In [14]: db.describe().T

Out[14]: count mean std min \
Europe 298.0 1462.382550 248.673290 731.0
Africa 298.0 29.818792 51.606065 0.0
Middle East and Asia 298.0 62.909396 102.519614 1.0
The Americas and the Caribbean 298.0 8.087248 9.397638 0.0
Antarctica and Oceania 298.0 1.949664 2.168216 0.0

4

25% 50% 75% max
Europe 1331.25 1446.0 1579.75 2551.0
Africa 7.00 14.0 30.00 484.0
Middle East and Asia 16.00 33.5 62.75 840.0
The Americas and the Caribbean 2.00 5.0 10.00 61.0
Antarctica and Oceania 0.00 1.0 3.00 11.0

• Equally, common descriptive statistics are also available:

In [15]: # Obtain minimum values for each table
db.min()

Out[15]: Europe 731
Africa 0
Middle East and Asia 1
The Americas and the Caribbean 0
Antarctica and Oceania 0
dtype: int64

In [16]: # Obtain minimum value for the column `Europe`
db['Europe'].min()

Out[16]: 731

Note here how we have restricted the calculation of the maximum value to one column only.
Similarly, we can restrict the calculations to a single row:

In [17]: # Obtain standard deviation for the row `E01006512`,
which represents a particular LSOA
db.loc['E01006512', :].std()

Out[17]: 457.8842648530303

• Creation of new variables: we can generate new variables by applying operations on existing
ones. For example, we can calculate the total population by area. Here is a couple of ways
to do it:

In [18]: # Longer, hardcoded
total = db['Europe'] + db['Africa'] + db['Middle East and Asia'] + \

db['The Americas and the Caribbean'] + db['Antarctica and Oceania']
Print the top of the variable
total.head()

Out[18]: GeographyCode
E01006512 1880
E01006513 2941
E01006514 2108
E01006515 1208
E01006518 1696
dtype: int64

5

In [19]: # One shot
total = db.sum(axis=1)
Print the top of the variable
total.head()

Out[19]: GeographyCode
E01006512 1880
E01006513 2941
E01006514 2108
E01006515 1208
E01006518 1696
dtype: int64

Note how we are using the command sum, just like we did with max or min before but, in this
case, we are not applying it over columns (e.g. the max of each column), but over rows, so we get
the total sum of populations by areas.

Once we have created the variable, we can make it part of the table:

In [20]: db['Total'] = total
db.head()

Out[20]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006512 24 0 1880
E01006513 53 7 2941
E01006514 61 5 2108
E01006515 18 2 1208
E01006518 19 4 1696

• Assigning new values: we can easily generate new variables with scalars, and modify those.

In [21]: # New variable with all ones
db['ones'] = 1
db.head()

Out[21]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185

6

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total \
GeographyCode
E01006512 24 0 1880
E01006513 53 7 2941
E01006514 61 5 2108
E01006515 18 2 1208
E01006518 19 4 1696

ones
GeographyCode
E01006512 1
E01006513 1
E01006514 1
E01006515 1
E01006518 1

And we can modify specific values too:

In [22]: db.loc['E01006512', 'ones'] = 3
db.head()

Out[22]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total \
GeographyCode
E01006512 24 0 1880
E01006513 53 7 2941
E01006514 61 5 2108
E01006515 18 2 1208
E01006518 19 4 1696

ones
GeographyCode
E01006512 3
E01006513 1
E01006514 1
E01006515 1
E01006518 1

• Permanently deleting variables is also within reach of one command:

7

In [23]: del db['ones']
db.head()

Out[23]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006512 24 0 1880
E01006513 53 7 2941
E01006514 61 5 2108
E01006515 18 2 1208
E01006518 19 4 1696

• Index-based querying.

We have already seen how to subset parts of a DataFrame if we know exactly which bits we
want. For example, if we want to extract the total and European population of the first four areas
in the table, we use loc with lists:

In [24]: eu_tot_first4 = db.loc[['E01006512', 'E01006513', 'E01006514', 'E01006515'], \
['Total', 'Europe']]

eu_tot_first4

Out[24]: Total Europe
GeographyCode
E01006512 1880 910
E01006513 2941 2225
E01006514 2108 1786
E01006515 1208 974

• Querying based on conditions.

However, sometimes, we do not know exactly which observations we want, but we do know
what conditions they need to satisfy (e.g. areas with more than 2,000 inhabitants). For these cases,
DataFrames support selection based on conditions. Let us see a few examples. Suppose we want
to select. . .

. . . areas with more than 2,500 people in Total:

In [25]: m5k = db.loc[db['Total'] > 2500, :]
m5k

Out[25]: Europe Africa Middle East and Asia \
GeographyCode

8

E01006513 2225 61 595
E01006747 2551 163 812
E01006751 1843 139 568

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006513 53 7 2941
E01006747 24 2 3552
E01006751 21 1 2572

. . . areas where there are no more than 750 Europeans:

In [26]: nm5ke = db.loc[db['Europe'] < 750, :]
nm5ke

Out[26]: Europe Africa Middle East and Asia \
GeographyCode
E01033757 731 39 223

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01033757 29 3 1025

. . . areas with exactly ten person from Antarctica and Oceania:

In [27]: oneOA = db.loc[db['Antarctica and Oceania'] == 10, :]
oneOA

Out[27]: Europe Africa Middle East and Asia \
GeographyCode
E01006679 1353 484 354

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006679 31 10 2232

Pro-tip: these queries can grow in sophistication with almost no limits. For example, here
is a case where we want to find out the areas where European population is less than half the
population:

In [28]: eu_lth = db.loc[(db['Europe'] * 100. / db['Total']) < 50, :]
eu_lth

Out[28]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006512 24 0 1880

9

• Combining queries.

Now all of these queries can be combined with each other, for further flexibility. For example,
imagine we want areas with more than 25 people from the Americas and Caribbean, but less than
1,500 in total:

In [29]: ac25_l500 = db.loc[(db['The Americas and the Caribbean'] > 25) & \
(db['Total'] < 1500), :]

ac25_l500

Out[29]: Europe Africa Middle East and Asia \
GeographyCode
E01033750 1235 53 129
E01033752 1024 19 114
E01033754 1262 37 112
E01033756 886 31 221
E01033757 731 39 223
E01033761 1138 52 138

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01033750 26 5 1448
E01033752 33 6 1196
E01033754 32 9 1452
E01033756 42 5 1185
E01033757 29 3 1025
E01033761 33 11 1372

• Sorting.

Among the many operations DataFrame objects support, one of the most useful ones is to sort a
table based on a given column. For example, imagine we want to sort the table by total population:

In [30]: db_pop_sorted = db.sort_values('Total', ascending=False)
db_pop_sorted.head()

Out[30]: Europe Africa Middle East and Asia \
GeographyCode
E01006747 2551 163 812
E01006513 2225 61 595
E01006751 1843 139 568
E01006524 2235 36 125
E01006787 2187 53 75

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006747 24 2 3552
E01006513 53 7 2941
E01006751 21 1 2572
E01006524 24 11 2431
E01006787 13 2 2330

10

If you inspect the help of db.sort_values, you will find that you can pass more than one
column to sort the table by. This allows you to do so-called hiearchical sorting: sort first based on
one column, if equal then based on another column, etc.

2.3 Visual exploration

The next step to continue exploring a dataset is to get a feel for what it looks like, visually. We
have already learnt how to unconver and inspect specific parts of the data, to check for particular
cases we might be intersted in. Now we will see how to plot the data to get a sense of the overall
distribution of values. For that, we will be using the Python library seaborn.

• Histograms.

One of the most common graphical devices to display the distribution of values in a variable
is a histogram. Values are assigned into groups of equal intervals, and the groups are plotted as
bars rising as high as the number of values into the group.

A histogram is easily created with the following command. In this case, let us have a look at
the shape of the overall population:

In [31]: _ = sns.distplot(db['Total'], kde=False)

Note we are using sns instead of pd, as the function belongs to seaborn instead of pandas.
We can quickly see most of the areas contain somewhere between 1,200 and 1,700 people,

approx. However, there are a few areas that have many more, even up to 3,500 people.
An additional feature to visualize the density of values is called rug, and adds a little tick for

each value on the horizontal axis:

11

http://stanford.edu/~mwaskom/software/seaborn/index.html

In [32]: _ = sns.distplot(db['Total'], kde=False, rug=True)

• Kernel Density Plots

Histograms are useful, but they are artificial in the sense that a continuous variable is made
discrete by turning the values into discrete groups. An alternative is kernel density estimation
(KDE), which produces an empirical density function:

In [33]: _ = sns.kdeplot(db['Total'], shade=True)

12

• Line and bar plots

Another very common way of visually displaying a variable is with a line or a bar chart. For
example, if we want to generate a line plot of the (sorted) total population by area:

In [34]: _ = db['Total'].sort_values(ascending=False).plot()

13

For a bar plot all we need to do is to change an argument of the call:

In [35]: _ = db['Total'].sort_values(ascending=False).plot(kind='bar')

Note that the large number of areas makes the horizontal axis unreadable. We can try to turn
the plot around by displaying the bars horizontally (see how it’s just changing bar for barh). To
make it readable, let us expand the plot’s height:

In [36]: _ = db['Total'].sort_values().plot(kind='barh', figsize=(6, 20))

14

15

2.3.1 Un/tidy data

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy.

Once you can read your data in, explore specific cases, and have a first visual approach to
the entire set, the next step can be preparing it for more sophisticated analysis. Maybe you are
thinking of modeling it through regression, or on creating subgroups in the dataset with particular
characteristics, or maybe you simply need to present summary measures that relate to a slightly
different arrangement of the data than you have been presented with.

For all these cases, you first need what statistician, and general R wizard, Hadley Wickham
calls “tidy data”. The general idea to “tidy” your data is to convert them from whatever structure
they were handed in to you into one that allows convenient and standardized manipulation, and
that supports directly inputting the data into what he calls “tidy” analysis tools. But, at a more
practical level, what is exactly “tidy data”? In Wickham’s own words:

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types.

He then goes on to list the three fundamental characteristics of “tidy data”:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

If you are further interested in the concept of “tidy data”, I recommend you check out the
original paper (open access) and the public repository associated with it.

Let us bring in the concept of “tidy data” to our own Liverpool dataset. First, remember its
structure:

In [37]: db.head()

Out[37]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total
GeographyCode
E01006512 24 0 1880
E01006513 53 7 2941
E01006514 61 5 2108
E01006515 18 2 1208
E01006518 19 4 1696

16

http://www.jstatsoft.org/v59/i10/
https://github.com/hadley/tidy-data

Thinking through tidy lenses, this is not a tidy dataset. It is not so for each of the three condi-
tions:

• Starting by the last one (each type of observational unit forms a table), this dataset actually
contains not one but two observational units: the different areas of Liverpool, captured by
GeographyCode; and subgroups of an area. To tidy up this aspect, we can create two different
tables:

In [38]: # Assign column `Total` into its own as a single-column table
db_totals = db[['Total']]
db_totals.head()

Out[38]: Total
GeographyCode
E01006512 1880
E01006513 2941
E01006514 2108
E01006515 1208
E01006518 1696

In [39]: # Create a table `db_subgroups` that contains every column in `db` without `Total`
db_subgroups = db.drop('Total', axis=1)
db_subgroups.head()

Out[39]: Europe Africa Middle East and Asia \
GeographyCode
E01006512 910 106 840
E01006513 2225 61 595
E01006514 1786 63 193
E01006515 974 29 185
E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania
GeographyCode
E01006512 24 0
E01006513 53 7
E01006514 61 5
E01006515 18 2
E01006518 19 4

Note we use drop to exclude “Total”, but we could also use a list with the names of all the
columns to keep. Additionally, notice how, in this case, the use of drop (which leaves db un-
touched) is preferred to that of del (which permanently removes the column from db).

At this point, the table db_totals is tidy: every row is an observation, every table is a variable,
and there is only one observational unit in the table.

The other table (db_subgroups), however, is not entirely tidied up yet: there is only one obser-
vational unit in the table, true; but every row is not an observation, and there are variable values
as the names of columns (in other words, every column is not a variable). To obtain a fully tidy
version of the table, we need to re-arrange it in a way that every row is a population subgroup

17

in an area, and there are three variables: GeographyCode, population subgroup, and population
count (or frequency).

Because this is actually a fairly common pattern, there is a direct way to solve it in pandas:

In [40]: tidy_subgroups = db_subgroups.stack()
tidy_subgroups.head()

Out[40]: GeographyCode
E01006512 Europe 910

Africa 106
Middle East and Asia 840
The Americas and the Caribbean 24
Antarctica and Oceania 0

dtype: int64

The method stack, well, “stacks” the different columns into rows. This fixes our “tidiness”
problems but the type of object that is returning is not a DataFrame:

In [41]: type(tidy_subgroups)

Out[41]: pandas.core.series.Series

It is a Series, which really is like a DataFrame, but with only one column. The additional
information (GeographyCode and population group) are stored in what is called an multi-index.
We will skip these for now, so we would really just want to get a DataFrame as we know it out of
the Series. This is also one line of code away:

In [42]: # Unfold the multi-index into different, new columns
tidy_subgroupsDF = tidy_subgroups.reset_index()
tidy_subgroupsDF.head()

Out[42]: GeographyCode level_1 0
0 E01006512 Europe 910
1 E01006512 Africa 106
2 E01006512 Middle East and Asia 840
3 E01006512 The Americas and the Caribbean 24
4 E01006512 Antarctica and Oceania 0

To which we can apply to renaming to make it look better:

In [43]: tidy_subgroupsDF = tidy_subgroupsDF.rename(columns={'level_1': 'Subgroup', 0: 'Freq'})
tidy_subgroupsDF.head()

Out[43]: GeographyCode Subgroup Freq
0 E01006512 Europe 910
1 E01006512 Africa 106
2 E01006512 Middle East and Asia 840
3 E01006512 The Americas and the Caribbean 24
4 E01006512 Antarctica and Oceania 0

Now our table is fully tidied up!

18

2.3.2 Grouping, transforming, aggregating

One of the advantage of tidy datasets is they allow to perform advanced transformations in a more
direct way. One of the most common ones is what is called “group-by” operations. Originated in
the world of databases, these operations allow you to group observations in a table by one of its
labels, index, or category, and apply operations on the data group by group.

For example, given our tidy table with population subgroups, we might want to compute the
total sum of population by each group. This task can be split into two different ones:

• Group the table in each of the different subgroups.
• Compute the sum of Freq for each of them.

To do this in pandas, meet one of its workhorses, and also one of the reasons why the library
has become so popular: the groupby operator.

In [44]: pop_grouped = tidy_subgroupsDF.groupby('Subgroup')
pop_grouped

Out[44]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f8c9401cc88>

The object pop_grouped still hasn’t computed anything, it is only a convenient way of speci-
fying the grouping. But this allows us then to perform a multitude of operations on it. For our
example, the sum is calculated as follows:

In [45]: pop_grouped.sum()

Out[45]: Freq
Subgroup
Africa 8886
Antarctica and Oceania 581
Europe 435790
Middle East and Asia 18747
The Americas and the Caribbean 2410

Similarly, you can also obtain a summary of each group:

In [46]: pop_grouped.describe()

Out[46]: Freq \
count mean std min

Subgroup
Africa 298.0 29.818792 51.606065 0.0
Antarctica and Oceania 298.0 1.949664 2.168216 0.0
Europe 298.0 1462.382550 248.673290 731.0
Middle East and Asia 298.0 62.909396 102.519614 1.0
The Americas and the Caribbean 298.0 8.087248 9.397638 0.0

25% 50% 75% max
Subgroup

19

Africa 7.00 14.0 30.00 484.0
Antarctica and Oceania 0.00 1.0 3.00 11.0
Europe 1331.25 1446.0 1579.75 2551.0
Middle East and Asia 16.00 33.5 62.75 840.0
The Americas and the Caribbean 2.00 5.0 10.00 61.0

We will not get into it today as it goes beyond the basics we want to conver, but keep in mind
that groupby allows you to not only call generic functions (like sum or describe), but also your
own functions. This opens the door for virtually any kind of transformation and aggregation
possible.

2.4 If you finish early. . .

Practice your data tidying skills with a different dataset. For example, you can have a look at the
Guardian’s version of Wikileaks’ Afghanistan war logs. The table is stored on a GoogleDoc on the
following address:

https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_
SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1

And its structure is as follows:

In [47]: from IPython.display import IFrame
url = 'https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1'
IFrame(url, 700, 400)

Out[47]: <IPython.lib.display.IFrame at 0x7f8c93952588>

Follow these steps:

• Download the table as a csv file (File –> Download as –> .csv, current sheet).
• Read it into Python.
• Explore it by creating a few plots.
• Examine its level of tidiness and turn it into a fully tidy dataset.
• Obtain a monthly total count of casualties and create a line or a bar plot of them.

This notebook, as well as the entire set of materials, code, and data included in this course are
available as an open Github repository available at: https://github.com/darribas/gds18

Geographic Data Science’18 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

20

http://www.theguardian.com/news/datablog/2010/jul/27/wikileaks-afghanistan-data-datajournalism
https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1
https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1
https://github.com/darribas/gds18

	Geographic Data Science - Lab 01
	Data ``munging''
	Dataset
	Data, sliced and diced
	Visual exploration
	Un/tidy data
	Grouping, transforming, aggregating

	If you finish early…

