
lab_04

August 6, 2018

1 Spatial weights

In this session we will be learning the ins and outs of one of the key pieces in spatial analysis:
spatial weights matrices. These are structured sets of numbers that formalize geographical rela-
tionships between the observations in a dataset. Essentially, a spatial weights matrix of a given
geography is a positive definite matrix of dimensions N by N, where N is the total number of
observations:

W =


0 w12 . . . w1N

w21
. . . wij

...
... wji 0

...
wN1 . . . . . . 0


where each cell wij contains a value that represents the degree of spatial contact or interac-

tion between observations i and j. A fundamental concept in this context is that of neighbor and
neighborhood. By convention, elements in the diagonal (wij) are set to zero. A neighbor of a given
observation i is another observation with which i has some degree of connection. In terms of W,
i and j are thus neighbors if wij > 0. Following this logic, the neighborhood of i will be the set
of observations in the system with which it has certain connection, or those observations with a
weight greater than zero.

There are several ways to create such matrices, and many more to transform them so they
contain an accurate representation that aligns with the way we understand spatial interactions
between the elements of a system. In this session, we will introduce the most commonly used
ones and will show how to compute them with PySAL.

In [1]: %matplotlib inline

import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt

1.1 Data

For this tutorial, we will use again the recently released 2015 Index of Multiple Deprivation (IMD)
for England and Wales. This dataset can be most easily downloaded from the CDRC data store

1



(link) and, since it already comes both in tabular as well as spatial data format (shapefile), it does
not need merging or joining to additional geometries.

In addition, we will be using the lookup between LSOAs and Medium Super Output Areas
(MSOAs), which can be downloaded on this link. This connects each LSOA polygon to the MSOA
they belong to. MSOAs are a coarser geographic delineation from the Office of National Statistics
(ONS), within which LSOAs are nested. That is, no LSOA boundary crosses any of an MSOA.

As usual, let us set the paths to the folders containing the files before anything so we can then
focus on data analysis exclusively (keep in mind the specific paths will probably be different for
your computer):

In [2]: # This will be different on your computer and will depend on where
# you have downloaded the files
imd_shp = '../../../gds17_data/E08000012_IMD/shapefiles/E08000012.shp'
lookup_path = '../../../gds17_data/output_areas_(2011)_to_lower_layer_super_output_areas_(2011)_to_middle_layer_super_output_areas_(2011)_to_local_authority_districts_(2011)_e+w_lookup/'

Let us load the IMD data first:

In [3]: # Read the file in
imd = gpd.read_file(imd_shp)
# Index it on the LSOA ID
imd = imd.set_index('LSOA11CD')
# Display summary
imd.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 12 columns):
imd_rank 298 non-null int64
imd_score 298 non-null float64
income 298 non-null float64
employment 298 non-null float64
education 298 non-null float64
health 298 non-null float64
crime 298 non-null float64
housing 298 non-null float64
living_env 298 non-null float64
idaci 298 non-null float64
idaopi 298 non-null float64
geometry 298 non-null object
dtypes: float64(10), int64(1), object(1)
memory usage: 30.3+ KB

1.2 Building spatial weights in PySAL

1.2.1 Contiguity

Contiguity weights matrices define spatial connections through the existence of common bound-
aries. This makes it directly suitable to use with polygons: if two polygons share boundaries to

2

https://data.cdrc.ac.uk/dataset/cdrc-english-indices-of-deprivation-2015-geodata-pack-liverpool-e08000012
http://www.ons.gov.uk/ons/external-links/social-media/g-m/2011-oas-to-2011-lower-layer-super-output-areas--lsoas---middle-layer-super-output-areas--msoa--and-lads.html


some degree, they will be labeled as neighbors under these kinds of weights. Exactly how much
they need to share is what differenciates the two approaches we will learn: queen and rook.

• Queen

Under the queen criteria, two observations only need to share a vortex (a single point) of their
boundaries to be considered neighbors. Constructing a weights matrix under these principles can
be done by running:

In [4]: w_queen = ps.weights.Queen.from_dataframe(imd)
w_queen

Out[4]: <pysal.weights.Contiguity.Queen at 0x1081416a0>

The command above creates an object w_queen of the class W. This is the format in which spatial
weights matrices are stored in PySAL. By default, the weights builder (Queen.from_dataframe) will
use the index of the table, which is useful so we can keep everything in line easily.

A W object can be queried to find out about the contiguity relations it contains. For example, if
we would like to know who is a neighbor of observation E01006690:

In [5]: w_queen['E01006690']

Out[5]: {'E01006691': 1.0,
'E01006692': 1.0,
'E01006695': 1.0,
'E01006697': 1.0,
'E01006720': 1.0,
'E01006759': 1.0,
'E01033763': 1.0}

This returns a Python dictionary that contains the ID codes of each neighbor as keys, and the
weights they are assigned as values. Since we are looking at a raw queen contiguity matrix, every
neighbor gets a weight of one. If we want to access the weight of a specific neighbor, E01006691
for example, we can do recursive querying:

In [6]: w_queen['E01006690']['E01006691']

Out[6]: 1.0

W objects also have a direct way to provide a list of all the neighbors or their weights for a given
observation. This is thanks to the neighbors and weights attributes:

In [7]: w_queen.neighbors['E01006690']

Out[7]: ['E01006692',
'E01006697',
'E01006759',
'E01033763',
'E01006720',
'E01006695',
'E01006691']

3



In [8]: w_queen.weights['E01006690']

Out[8]: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Once created, W objects can provide much information about the matrix, beyond the basic at-
tributes one would expect. We have direct access to the number of neighbors each observation
has via the attribute cardinalities. For example, to find out how many neighbors observation
E01006524 has:

In [9]: w_queen.cardinalities['E01006524']

Out[9]: 6

Since cardinalities is a dictionary, it is direct to convert it into a Series object:

In [10]: queen_card = pd.Series(w_queen.cardinalities)
queen_card.head()

Out[10]: E01006512 6
E01006513 9
E01006514 5
E01006515 8
E01006518 5
dtype: int64

This allows, for example, to access quick plotting, which comes in very handy to get an
overview of the size of neighborhoods in general:

In [11]: sns.distplot(queen_card, bins=10)

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x11d832f98>

4



The figure above shows how most observations have around five neighbors, but there is some
variation around it. The distribution also seems to follow a symmetric form, where deviations
from the average occur both in higher and lower values almost evenly.

Some additional information about the spatial relationships contained in the matrix are also
easily available from a W object. Let us tour over some of them:

In [12]: # Number of observations
w_queen.n

Out[12]: 298

In [13]: # Average number of neighbors
w_queen.mean_neighbors

Out[13]: 5.6174496644295306

In [14]: # Min number of neighbors
w_queen.min_neighbors

Out[14]: 1

In [15]: # Max number of neighbors
w_queen.max_neighbors

Out[15]: 11

In [16]: # Islands (observations disconnected)
w_queen.islands

Out[16]: []

In [17]: # Order of IDs (first five only in this case)
w_queen.id_order[:5]

Out[17]: ['E01006512', 'E01006513', 'E01006514', 'E01006515', 'E01006518']

Spatial weight matrices can be explored visually in other ways. For example, we can pick an
observation and visualize it in the context of its neighborhood. The following plot does exactly
that by zooming into the surroundings of LSOA E01006690 and displaying its polygon as well as
those of its neighbors:

In [18]: # Setup figure
f, ax = plt.subplots(1, figsize=(6, 6))
# Plot base layer of polygons
imd.plot(ax=ax, facecolor='k', linewidth=0.1)
# Select focal polygon
# NOTE we pass both the area code and the column name
# (`geometry`) within brackets!!!

5



focus = imd.loc[['E01006690'], ['geometry']]
# Plot focal polygon
focus.plot(facecolor='red', alpha=1, linewidth=0, ax=ax)
# Plot neighbors
neis = imd.loc[w_queen['E01006690'], :]
neis.plot(ax=ax, facecolor='lime', linewidth=0)
# Title
f.suptitle("Queen neighbors of `E01006690`")
# Style and display on screen
plt.axis('equal')
ax.set_ylim(388000, 393500)
ax.set_xlim(336000, 339500)
plt.show()

Note how the figure is built gradually, from the base map (L. 4-5), to the focal point (L. 9), to
its neighborhood (L. 11-13). Once the entire figure is plotted, we zoom into the area of interest (L.

6



19-20).

• Rook

Rook contiguity is similar to and, in many ways, superseded by queen contiguity. However,
since it sometimes comes up in the literature, it is useful to know about it. The main idea is the
same: two observations are neighbors if they share some of their boundary lines. However, in the
rook case, it is not enough with sharing only one point, it needs to be at least a segment of their
boundary. In most applied cases, these differences usually boil down to how the geocoding was
done, but in some cases, such as when we use raster data or grids, this approach can differ more
substantively and it thus makes more sense.

From a technical point of view, constructing a rook matrix is very similar:

In [19]: w_rook = ps.weights.Rook.from_dataframe(imd)
w_rook

Out[19]: <pysal.weights.Contiguity.Rook at 0x11d899b38>

The output is of the same type as before, a W object that can be queried and used in very much
the same way as any other one.

[Optional exercise]
Create a similar map for the rook neighbors of polygon E01006580.
How would it differ if the spatial weights were created based on the queen criterion?

1.2.2 Distance

Distance based matrices assign the weight to each pair of observations as a function of how far
from each other they are. How this is translated into an actual weight varies across types and
variants, but they all share that the ultimate reason why two observations are assigned some
weight is due to the distance between them.

• K-Nearest Neighbors

One approach to define weights is to take the distances between a given observation and the
rest of the set, rank them, and consider as neighbors the k closest ones. That is exactly what the
k-nearest neighbors (KNN) criterium does.

To calculate KNN weights, we can use a similar function as before and derive them from a
shapefile:

In [20]: knn5 = ps.weights.KNN.from_dataframe(imd, k=5)
knn5

Out[20]: <pysal.weights.Distance.KNN at 0x11d876908>

7



Note how we need to specify the number of nearest neighbors we want to consider with the
argument k. Since it is a polygon shapefile that we are passing, the function will automatically
compute the centroids to derive distances between observations. Alternatively, we can provide
the points in the form of an array, skipping this way the dependency of a file on disk:

In [21]: # Extract centroids
cents = imd.centroid
# Extract coordinates into an array
pts = np.array([(pt.x, pt.y) for pt in cents])
# Compute KNN weights
knn5_from_pts = ps.knnW_from_array(pts, k=5)
knn5_from_pts

Out[21]: <pysal.weights.Distance.KNN at 0x11f82c2b0>

• Distance band

Another approach to build distance-based spatial weights matrices is to draw a circle of cer-
tain radious and consider neighbor every observation that falls within the circle. The technique
has two main variations: binary and continuous. In the former one, every neighbor is given a
weight of one, while in the second one, the weights can be further tweaked by the distance to the
observation of interest.

To compute binary distance matrices in PySAL, we can use the following command:

In [22]: w_dist1kmB = ps.threshold_binaryW_from_shapefile(imd_shp,
1000, idVariable='LSOA11CD')

NOTE how we approach this in a different way, by using the method
threshold_binaryW_from_shapefile we do not build the W based on the table imd, but in-
stead use directly the file the table came from (which we point at using imd_shp, the path). Note
also how we need to include the name of the column where the index of the table is stored
(LSOA11CD, the LSOA code) so the matrix is aligned and indexed in the same way as the tabl. Once
built, however, the output is of the same kind as before, a W object.

This creates a binary matrix that considers neighbors of an observation every polygon whose
centroid is closer than 1,000 metres (1Km) of the centroid of such observation. Check, for example,
the neighborhood of polygon E01006690:

In [23]: w_dist1kmB['E01006690']

Out[23]: {'E01006691': 1.0,
'E01006692': 1.0,
'E01006695': 1.0,
'E01006697': 1.0,
'E01006720': 1.0,
'E01006725': 1.0,
'E01006726': 1.0,
'E01033763': 1.0}

Note that the units in which you specify the distance directly depend on the CRS in which the
spatial data are projected, and this has nothing to do with the weights building but it can affect it
significantly. Recall how you can check the CRS of a GeoDataFrame:

8



In [24]: imd.crs

Out[24]: {'datum': 'OSGB36',
'k': 0.9996012717,
'lat_0': 49,
'lon_0': -2,
'no_defs': True,
'proj': 'tmerc',
'units': 'm',
'x_0': 400000,
'y_0': -100000}

In this case, you can see the unit is expressed in metres (m), hence we set the threshold to 1,000
for a circle of 1km of radious.

An extension of the weights above is to introduce further detail by assigning different weights
to different neighbors within the radious circle based on how far they are from the observation of
interest. For example, we could think of assigning the inverse of the distance between observa-
tions i and j as wij. This can be computed with the following command:

In [25]: w_dist1kmC = ps.threshold_continuousW_from_shapefile(imd_shp,
1000, idVariable='LSOA11CD')

/Users/dani/anaconda/envs/gds/lib/python3.5/site-packages/scipy/sparse/data.py:103: RuntimeWarning: divide by zero encountered in reciprocal
return self._with_data(data ** n)

In w_dist1kmC, every observation within the 1km circle is assigned a weight equal to the in-
verse distance between the two:

wij =
1

dij

This way, the further apart i and j are from each other, the smaller the weight wij will be.
Contrast the binary neighborhood with the continuous one for E01006690:

In [26]: w_dist1kmC['E01006690']

Out[26]: {'E01006691': 0.0013201152399570065,
'E01006692': 0.0016898108116624934,
'E01006695': 0.0011209238023710086,
'E01006697': 0.0014034696122458307,
'E01006720': 0.0013390452031951062,
'E01006725': 0.0010090443460836081,
'E01006726': 0.0010528393008232928,
'E01033763': 0.0012983249268718085}

[Optional exercise]
Explore the help for functions ps.threshold_binaryW_from_array and

ps.threshold_continuousW_from_array and try to use them to replicate w_dist1kmB and
w_dist1kmC.

9



Following this logic of more detailed weights through distance, there is a temptation to take
it further and consider everyone else in the dataset as a neighbor whose weight will then get
modulated by the distance effect shown above. However, although conceptually correct, this
approach is not always the most computationally or practical one. Because of the nature of spatial
weights matrices, particularly because of the fact their size is N by N, they can grow substantially
large. A way to cope with this problem is by making sure they remain fairly sparse (with many
zeros). Sparsity is typically ensured in the case of contiguity or KNN by construction but, with
inverse distance, it needs to be imposed as, otherwise, the matrix could be potentially entirely
dense (no zero values other than the diagonal). In practical terms, what is usually done is to
impose a distance threshold beyond which no weight is assigned and interaction is assumed to
be non-existent. Beyond being computationally feasible and scalable, results from this approach
usually do not differ much from a fully “dense” one as the additional information that is included
from further observations is almost ignored due to the small weight they receive. In this context,
a commonly used threshold, although not always best, is that which makes every observation to
have at least one neighbor.

Such a threshold can be calculated as follows:

In [27]: min_thr = ps.min_threshold_dist_from_shapefile(imd_shp)
min_thr

Out[27]: 939.73762911218523

Which can then be used to calculate an inverse distance weights matrix:

In [28]: w_min_dist = ps.threshold_continuousW_from_shapefile(imd_shp,
min_thr, idVariable='LSOA11CD')

/Users/dani/anaconda/envs/gds/lib/python3.5/site-packages/scipy/sparse/data.py:103: RuntimeWarning: divide by zero encountered in reciprocal
return self._with_data(data ** n)

[Optional extension. Lecture figure]
Below is how to build a visualization for distance-based weights that displays the polygons,

highlighting the focus and its neighbors, and then overlays the centroids and the buffer used to
decide whether a polygon is a neighbor or not. Since this is distance-based weights, there needs to
be a way to establish distance between two polygons and, in this case, the distance between their
centroids is used.

In [29]: # Setup figure
f, ax = plt.subplots(1, figsize=(4, 4))
# Plot base layer of polygons
imd.plot(ax=ax, facecolor='k', linewidth=0.1)
# Select focal polygon
# NOTE we pass both the area code and the column name
# (`geometry`) within brackets!!!

10



focus = imd.loc[['E01006690'], ['geometry']]
# Plot focal polygon
focus.plot(facecolor='red', alpha=1, linewidth=0, ax=ax)
# Plot neighbors
neis = imd.loc[w_queen['E01006690'], :]
neis.plot(ax=ax, facecolor='lime', linewidth=0)
# Plot 1km buffer
buf = focus.centroid.buffer(1000)
buf.plot(edgecolor='yellow', alpha=0, ax=ax)
# Plot centroids of neighbor
pts = np.array([(pt.x, pt.y) for pt in imd.centroid])
ax.plot(pts[:, 0], pts[:, 1], color='#00d8ea',

linewidth=0, alpha=0.75, marker='o', markersize=4)
#imd.centroid.plot(axes=ax)
# Title
f.suptitle("Neighbors within 1km of `E01006690`")
# Style, zoom and display on screen
plt.axis('equal')
ax.set_ylim(388000, 393500)
ax.set_xlim(336000, 339500)
plt.show()

11



1.2.3 Block weights

Block weights connect every observation in a dataset that belongs to the same category in a list
provided ex-ante. Usually, this list will have some relation to geography an the location of the ob-
servations but, technically speaking, all one needs to create block weights is a list of memberships.
In this class of weights, neighboring observations, those in the same group, are assigned a weight
of one, and the rest receive a weight of zero.

In this example, we will build a spatial weights matrix that connects every LSOA with all the
other ones in the same MSOA. To do this, we first need a lookup list that connects both kinds of
geographies:

In [30]: # NOTE: disregard the warning in pink that might come from running
# this cell
file_name = 'OA11_LSOA11_MSOA11_LAD11_EW_LUv2.csv'
lookup = pd.read_csv(lookup_path+file_name, encoding='iso-8859-1')
lookup = lookup[['LSOA11CD', 'MSOA11CD']].drop_duplicates(keep='last')\

.set_index('LSOA11CD')['MSOA11CD']
lookup.head()

/Users/dani/anaconda/envs/gds/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2728: DtypeWarning: Columns (7) have mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)

Out[30]: LSOA11CD
E01000002 E02000001
E01032740 E02000001
E01000005 E02000001
E01000009 E02000017
E01000008 E02000016
Name: MSOA11CD, dtype: object

Since the original file contains much more information than we need for this exercise, note
how in line 2 we limit the columns we keep to only two, LSOA11CD and MSOA11CD. We also add an
additional command, drop_duplicates, which removes elements whose index is repeated more
than once, as is the case in this dataset (every LSOA has more than one row in this table). By
adding the take_last argument, we make sure that one and only one element of each index value
is retained. For ease of use later on, we set the index, that is the name of the rows, to LSOA11CD.
This will allow us to perform easy lookups without having to perform full DataFrame queries, and
it is also a more computationally efficient way to select observations.

For example, if we want to know in which MSOA the polygon E01000003 is, we just need to
type:

In [31]: lookup.loc['E01000003']

Out[31]: 'E02000001'

With the lookup in hand, let us append it to the IMD table to keep all the necessary pieces in
one place only:

In [32]: imd['MSOA11CD'] = lookup

12



Now we are ready to build a block spatial weights matrix that connects as neighbors all the
LSOAs in the same MSOA. Using PySAL, this is a one-line task:

In [33]: w_block = ps.block_weights(imd['MSOA11CD'])

In this case, PySAL does not allow to pass the argument idVariable as above. As a result,
observations are named after the the order the occupy in the list:

In [34]: w_block[0]

Out[34]: {218: 1.0, 219: 1.0, 220: 1.0, 292: 1.0}

The first element is neighbor of observations 218, 129, 220, and 292, all of them with an assigned
weight of 1. However, it is easy enough to correct this by using the additional method remap_ids:

In [35]: w_block.remap_ids(imd.index)

Now if you try w_bloc[0], it will return an error. But if you query for the neighbors of an
observation by its LSOA id, it will work:

In [36]: w_block['E01006512']

Out[36]: {'E01006747': 1.0, 'E01006748': 1.0, 'E01006751': 1.0, 'E01033763': 1.0}

[Optional exercise]
For block weights, create a similar map to that of queen neighbors of polygon E01006690.

1.3 Standardizing W matrices

In the context of many spatial analysis techniques, a spatial weights matrix with raw values
(e.g. ones and zeros for the binary case) is not always the best suiting one for analysis and some
sort of transformation is required. This implies modifying each weight so they conform to certain
rules. PySAL has transformations baked right into the W object, so it is easy to check the state of an
object as well as to modify it.

Consider the original queen weights, for observation E01006690:

In [37]: w_queen['E01006690']

Out[37]: {'E01006691': 1.0,
'E01006692': 1.0,
'E01006695': 1.0,
'E01006697': 1.0,
'E01006720': 1.0,
'E01006759': 1.0,
'E01033763': 1.0}

13



Since it is contiguity, every neighbor gets one, the rest zero weight. We can check if the object
w_queen has been transformed or not by calling the argument transform:

In [38]: w_queen.transform

Out[38]: 'O'

where O stands for “original”, so no transformations have been applied yet. If we want to
apply a row-based transformation, so every row of the matrix sums up to one, we modify the
transform attribute as follows:

In [39]: w_queen.transform = 'R'

Now we can check the weights of the same observation as above and find they have been
modified:

In [40]: w_queen['E01006690']

Out[40]: {'E01006691': 0.14285714285714285,
'E01006692': 0.14285714285714285,
'E01006695': 0.14285714285714285,
'E01006697': 0.14285714285714285,
'E01006720': 0.14285714285714285,
'E01006759': 0.14285714285714285,
'E01033763': 0.14285714285714285}

Save for precission issues, the sum of weights for all the neighbors is one:

In [41]: pd.Series(w_queen['E01006690']).sum()

Out[41]: 0.99999999999999978

Returning the object back to its original state is as simple as assigning transform back to orig-
inal:

In [42]: w_queen.transform = 'O'

In [43]: w_queen['E01006690']

Out[43]: {'E01006691': 1.0,
'E01006692': 1.0,
'E01006695': 1.0,
'E01006697': 1.0,
'E01006720': 1.0,
'E01006759': 1.0,
'E01033763': 1.0}

PySAL supports the following transformations:

• O: original, returning the object to the initial state.
• B: binary, with every neighbor having assigned a weight of one.
• R: row, with all the neighbors of a given observation adding up to one.
• V: variance stabilizing, with the sum of all the weights being constrained to the number of

observations.

14



1.4 Reading and Writing spatial weights in PySAL

Sometimes, if a dataset is very detailed or large, it can be costly to build the spatial weights matrix
of a given geography and, despite the optimizations in the PySAL code, the computation time can
quickly grow out of hand. In these contexts, it is useful to not have to re-build a matrix from
scratch every time we need to re-run the analysis. A useful solution in this case is to build the
matrix once, and save it to a file where it can be reloaded at a later stage if needed.

PySAL has a common way to write any kind of W object into a file using the command open.
The only element we need to decide for ourselves beforehand is the format of the file. Although
there are several formats in which spatial weight matrices can be stored (have a look at the list of
supported ones by PySAL), we will focused on the two most commonly used ones:

• .gal files for contiguity weights

Contiguity spatial weights can be saved into a .gal file with the following commands:

In [44]: # Open file to write into
fo = ps.open('imd_queen.gal', 'w')
# Write the matrix into the file
fo.write(w_queen)
# Close the file
fo.close()

The process is composed by the following three steps:

1. Open a target file for writing the matrix, hence the w argument. In this case, if a file
imd_queen.gal already exists, it will be overwritten, so be careful.

2. Write the W object into the file.
3. Close the file. This is important as some additional information is written into the file at this

stage, so failing to close the file might have unintended consequences.

Once we have the file written, it is possible to read it back into memory with the following
command:

In [45]: w_queen2 = ps.open('imd_queen.gal', 'r').read()
w_queen2

Out[45]: <pysal.weights.weights.W at 0x11f81c5f8>

Note how we now use r instead of w because we are reading the file, and also notice how we
open the file and, in the same line, we call read() directly.

• .gwt files for distance-based weights.

A very similar process to the one above can be used to read and write distance based weights.
The only difference is specifying the right file format, .gwt in this case. So, if we want to write
w_dist1km into a file, we will run:

15

http://pysal.readthedocs.org/en/latest/users/tutorials/fileio.html


In [46]: # Open file
fo = ps.open('imd_dist1km.gwt', 'w')
# Write matrix into the file
fo.write(w_dist1kmC)
# Close file
fo.close()

And if we want to read the file back in, all we need to do is:

In [47]: w_dist1km2 = ps.open('imd_dist1km.gwt', 'r').read()

/Users/dani/anaconda/envs/gds/lib/python3.5/site-packages/pysal/core/IOHandlers/gwt.py:148: RuntimeWarning: DBF relating to GWT was not found, proceeding with unordered string ids.
warn("DBF relating to GWT was not found, proceeding with unordered string ids.", RuntimeWarning)

Note how, in this case, you will probably receive a warning alerting you that there was not a
DBF relating to the file. This is because, by default, PySAL takes the order of the observations in
a .gwt from a shapefile. If this is not provided, PySAL cannot entirely determine all the elements
and hence the resulting W might not be complete (islands, for example, can be missing). To fully
complete the reading of the file, we can remap the ids as we have seen above:

In [48]: w_dist1km2.remap_ids(imd.index)

1.5 Spatial Lag

One of the most direct applications of spatial weight matrices is the so-called spatial lag. The spatial
lag of a given variable is the product of a spatial weight matrix and the variable itself:

Ysl = WY

where Y is a Nx1 vector with the values of the variable. Recall that the product of a matrix
and a vector equals the sum of a row by column element multiplication for the resulting value of
a given row. In terms of the spatial lag:

ysl−i = ∑
j

wijyj

If we are using row-standardized weights, wij becomes a proportion between zero and one,
and ysl−i can be seen as the average value of Y in the neighborhood of i.

The spatial lag is a key element of many spatial analysis techniques, as we will see later on and,
as such, it is fully supported in PySAL. To compute the spatial lag of a given variable, imd_score
for example:

In [49]: # Row-standardize the queen matrix
w_queen.transform = 'R'
# Compute spatial lag of `imd_score`
w_queen_score = ps.lag_spatial(w_queen, imd['imd_score'])
# Print the first five elements
w_queen_score[:5]

Out[49]: array([ 48.27833333, 34.96777778, 46.538 , 40.02375 , 63.738 ])

16



Line 4 contains the actual computation, which is highly optimized in PySAL. Note that, despite
passing in a pd.Series object, the output is a numpy array. This however, can be added directly to
the table imd:

In [50]: imd['w_queen_score'] = w_queen_score

[Optional exercise]
Explore the spatial lag of w_queen_score by constructing a density/histogram plot similar to

those created in Lab 2. Compare these with one for imd_score. What differences can you tell?

1.6 Moran Plot

The Moran Plot is a graphical way to start exploring the concept of spatial autocorrelation, and
it is an easy application of spatial weight matrices and the spatial lag. In essence, it is a simple
scatter plot in which a given variable (imd_score, for example) is plotted against its own spatial
lag. Usually, a fitted line is added to include more information:

In [51]: # Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot values
sns.regplot(x="imd_score", y="w_queen_score", data=imd)
# Display
plt.show()

17



In order to easily compare different scatter plots and spot outlier observations, it is common
practice to standardize the values of the variable before computing its spatial lag and plotting
it. This can be accomplished by substracting the average value and dividing the result by the
standard deviation:

zi =
y − ȳ

σy

where zi is the standardized version of yi, ȳ is the average of the variable, and σ its standard
deviation.

Creating a standardized Moran Plot implies that average values are centered in the plot (as
they are zero when standardized) and dispersion is expressed in standard deviations, with the rule
of thumb of values greater or smaller than two standard deviations being outliers. A standardized
Moran Plot also partitions the space into four quadrants that represent different situations:

1. High-High (HH): values above average surrounded by values above average.

18



2. Low-Low (LL): values below average surrounded by values below average.
3. High-Low (HL): values above average surrounded by values below average.
4. Low-High (LH): values below average surrounded by values above average.

These will be further explored once spatial autocorrelation has been properly introduced in
subsequent lectures.

In [52]: # Standardize the IMD scores
std_imd = (imd['imd_score'] - imd['imd_score'].mean()) / imd['imd_score'].std()
# Compute the spatial lag of the standardized version and save is as a
# Series indexed as the original variable
std_w_imd = pd.Series(ps.lag_spatial(w_queen, std_imd), index=std_imd.index)
# Setup the figure and axis
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot values
sns.regplot(x=std_imd, y=std_w_imd)
# Add vertical and horizontal lines
plt.axvline(0, c='k', alpha=0.5)
plt.axhline(0, c='k', alpha=0.5)
# Display
plt.show()

19



[Optional exercise]
Create a standardized Moran Plot for each of the components of the IMD:

• Crime
• Education
• Employment
• Health
• Housing
• Income
• Living environment

Bonus if you can generate all the plots with a for loop.
Bonus-II if you explore the functionality of Seaborn’s jointplot (link and link) to create a

richer Moran plot.

20

http://stanford.edu/~mwaskom/software/seaborn/tutorial/regression.html#plotting-a-regression-in-other-contexts
http://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.jointplot.html#seaborn.jointplot


This notebook, as well as the entire set of materials, code, and data included in this course are
available as an open Github repository available at: https://github.com/darribas/gds17

Geographic Data Science’17 - Lab 4 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

21

https://github.com/darribas/gds17

	Spatial weights
	Data
	Building spatial weights in PySAL
	Contiguity
	Distance
	Block weights

	Standardizing W matrices
	Reading and Writing spatial weights in PySAL
	Spatial Lag
	Moran Plot


