
lab_03

August 6, 2018

1 Data mapping

In this session, we will build on all we have learnt so far about loading and manipulating (spa-
tial) data and apply it to one of the most commonly used forms of spatial analysis: choropleths.
Remember these are maps that display the spatial distribution of a variable encoded in a color
scheme, also called palette. Although there are many ways in which you can convert the values of
a variable into a specific color, we will focus in this context only on a handful of them, in particular:

• Unique values.
• Equal interval.
• Quantiles.
• Fisher-Jenks.

In addition, we will cover how to add base maps that provide context from rasters and, in two
optional extensions, will review two more additional ways of displaying data in maps: cartograms
and conditional maps.

Before all this mapping fun, let us get the importing of libraries and data loading out of the
way:

In [1]: %matplotlib inline

import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt

1.1 Data

For this tutorial, we will use the recently released 2015 Index of Multiple Deprivation (IMD) for
England and Wales. This dataset can be most easily downloaded from the CDRC data store (link)
and, since it already comes both in tabular as well as spatial data format (shapefile), it does not
need merging or joining to additional geometries.

Although all the elements of the IMD, including the ranks and the scores themselves, are in
the IMD dataset, we will also be combining them with additional data from the Census, to explore
how deprivation is related to other socio-demographic characteristics of the area. For that we will
revisit the Census Data Pack (link) we used previously.

1

https://data.cdrc.ac.uk/dataset/cdrc-english-indices-of-deprivation-2015-geodata-pack-liverpool-e08000012
https://data.cdrc.ac.uk/dataset/cdrc-2011-census-data-packs-for-local-authority-district-liverpool-e08000012

In order to create maps with a base layer that provides context, we will be using a raster file
derived from OS VectorMap District (Backdrop Raster) and available for download on this link.

As usual, let us set the paths to the folders containing the files before anything so we can then
focus on data analysis exclusively (keep in mind the specific paths will probably be different for
your computer):

In [2]: # This will be different on your computer and will depend on where
you have downloaded the files
imd_shp = '../../../gds17_data/E08000012_IMD/shapefiles/E08000012.shp'
liv_path = 'figs/lab04_liverpool.tif'
data_path = '../../../gds17_data/Liverpool/'

IMPORTANT: the paths above might have look different in your computer. See this introduc-
tory notebook for more details about how to set your paths.

• IMD data

Now we can load up the IMD data exactly as we did earlier for a shapefile:

In [3]: # Read the file in
imd = gpd.read_file(imd_shp)
Index it on the LSOA ID
imd = imd.set_index('LSOA11CD')
Display summary
imd.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 12 columns):
imd_rank 298 non-null int64
imd_score 298 non-null float64
income 298 non-null float64
employment 298 non-null float64
education 298 non-null float64
health 298 non-null float64
crime 298 non-null float64
housing 298 non-null float64
living_env 298 non-null float64
idaci 298 non-null float64
idaopi 298 non-null float64
geometry 298 non-null object
dtypes: float64(10), int64(1), object(1)
memory usage: 30.3+ KB

Note how on line 4 we index the resulting table imd with the column LSOA11CD. Effectively, this
means we are “naming” the rows, the same way we the columns are named, using the column
LSOA11CD, which contains the unique ID’s of each area. This affords us some nice slicing and
querying capabilities as well as permitting to merge the table with other ones more easily.

2

https://www.ordnancesurvey.co.uk/business-and-government/products/vectormap-district.html
http://darribas.org/gds17/content/labs/figs/lab04_liverpool.tif
begin.html
begin.html

Pay attention also to how exactly we index the table: we create a new object that is named in
the same way, imd, but that contains the result of applying the function set_index to the original
object imd. As usual, there are many ways to index a table in Python, but this is one of the most
direct and expressive ones.

• Census data

In order to explore additional dimensions of deprivation, and to have categorical data to dis-
play with “unique values” choropleths, we will use some of the Census data pack. Although most
of the Census variables are continuous, we will transform them to create categorical characteristics.
Remember a categorical variable is one that comprises only a limited number of potential values,
and these are not comparable with each other across a numerical scale. For example, religion
or country of origin are categorical variables. It is not possible to compare their different values
in a quantitative way (religion A is not double or half of religion B) but instead they represent
qualitative differences.

In particular, we are going to use tables QS104EW (Gender) and KS103EW (marital status). The
way these are presented in its raw form is as tabulated counts of each of the possible categories.
Our strategy to turn these into a single categorical variable for each case is to compare the counts
for each area and assign that of the largest case. For example, in the first case, an area will be
labelled as “male” if there are more males than females living in that particular LSOA. In the
case of marital status, although there are more cases, we will simplify and use only “married”
and “single” and assign one or the other on the bases of which ones are more common in each
particular area.

NOTE: the following code snippet involves some data transformations that are a bit more
advanced that what is covered in this course. Simply run them to load the data, but you are not
expected to know some of the coding tricks required in this cell.

In [4]: # Gender breakup
Read table (csv file)
gender = pd.read_csv(data_path+'tables/QS104EW_lsoa11.csv', index_col='GeographyCode')
Rename columns from code to human-readable name
gender = gender.rename(columns={'QS104EW0002': 'Male', \

'QS104EW0003': 'Female'})[['Male', 'Female']]
Create male-female switcher
maj_male = gender['Male'] > gender['Female']
Add "Gender_Majority" variable to table and assign the switcher
gender['Gender_Majority'] = maj_male
Replace `True` values with "Male" and `False` with "Female"
gender.loc[gender['Gender_Majority']==True, 'Gender_Majority'] = 'Male'
gender.loc[gender['Gender_Majority']==False, 'Gender_Majority'] = 'Female'

Status breakup
Read table (csv file)
sinmar = pd.read_csv(data_path+'tables/KS103EW_lsoa11.csv', index_col='GeographyCode')
Rename columns from code to human-readable name
sinmar = sinmar.rename(columns={'KS103EW0002': 'Single', \

'KS103EW0003': 'Married'})[['Single', 'Married']]
Create sigle-married switcher

3

maj_sin = sinmar['Single'] > sinmar['Married']
Add "Status_Majority" variable to table and assign the switcher
sinmar['Status_Majority'] = maj_sin
Replace `True` values with "Single" and `False` with "Married"
sinmar.loc[sinmar['Status_Majority']==True, 'Status_Majority'] = 'Single'
sinmar.loc[sinmar['Status_Majority']==False, 'Status_Majority'] = 'Married'

Join
both = imd.join(sinmar).join(gender)
Reset the CRS after join
both.crs = imd.crs

This creates the table we will be using for the rest of the session:

In [5]: both.head()

Out[5]: imd_rank imd_score income employment education health crime \
LSOA11CD
E01006512 10518 25.61 0.10 0.08 10.06 1.19 -0.20
E01006513 10339 25.91 0.04 0.03 20.13 0.58 1.50
E01006514 5247 37.64 0.19 0.15 15.50 1.86 0.74
E01006515 1019 58.99 0.43 0.30 33.51 1.90 1.16
E01006518 662 63.37 0.43 0.34 49.90 2.24 0.67

housing living_env idaci idaopi \
LSOA11CD
E01006512 24.49 68.91 0.16 0.31
E01006513 25.15 85.48 0.21 0.20
E01006514 21.85 58.90 0.23 0.48
E01006515 17.40 29.78 0.46 0.76
E01006518 15.52 31.03 0.50 0.52

geometry Single Married \
LSOA11CD
E01006512 POLYGON ((336103.358 389628.58, 336103.416 389... 1288 287
E01006513 POLYGON ((335173.781 389691.538, 335169.798 38... 2613 170
E01006514 POLYGON ((335495.676 389697.267, 335495.444 38... 1583 204
E01006515 POLYGON ((334953.001 389029, 334951 389035, 33... 587 218
E01006518 POLYGON ((335354.015 388601.947, 335354 388602... 716 363

Status_Majority Male Female Gender_Majority
LSOA11CD
E01006512 Single 1070 810 Male
E01006513 Single 1461 1480 Female
E01006514 Single 1177 931 Male
E01006515 Single 595 613 Female
E01006518 Single 843 853 Female

A look at the variables reveals that, in effect, we have successfuly merged the IMD data with
the categorical variables derived from Census tables:

4

In [6]: both.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 18 columns):
imd_rank 298 non-null int64
imd_score 298 non-null float64
income 298 non-null float64
employment 298 non-null float64
education 298 non-null float64
health 298 non-null float64
crime 298 non-null float64
housing 298 non-null float64
living_env 298 non-null float64
idaci 298 non-null float64
idaopi 298 non-null float64
geometry 298 non-null object
Single 298 non-null int64
Married 298 non-null int64
Status_Majority 298 non-null object
Male 298 non-null int64
Female 298 non-null int64
Gender_Majority 298 non-null object
dtypes: float64(10), int64(5), object(3)
memory usage: 54.2+ KB

Now we are fully ready to map!

1.2 Choropleths

1.2.1 Unique values

A choropleth for categorical variables simply assigns a different color to every potential value in
the series. The main requirement in this case is then for the color scheme to reflect the fact that
different values are not ordered or follow a particular scale.

In Python, thanks to geopandas, creating categorical choropleths is possible with one line of
code. To demonstrate this, we can plot the spatial distribution of LSOAs with a more female
population than male and viceversa:

In [7]: both.plot(column='Gender_Majority', categorical=True,
legend=True, linewidth=0.1)

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x123505fd0>

5

Let us stop for a second in a few crucial aspects:

• Note how we are using the same approach as for basic maps, the command plot, but we now
need to add the argument column to specify which column in particular is to be represented.

• Since the variable is categorical we need to make that explicit by setting the argument
categorical to True.

• As an optional argument, we can set legend to True and the resulting figure will include a
legend with the names of all the values in the map.

• Unless we specify a different colormap, the selected one respects the categorical nature of
the data by not implying a gradient or scale but a qualitative structure.

[Optional exercise]
Create a categorical map of the marital status in Liverpool. Where are the areas with more

married than single population?

1.2.2 Equal interval

If, instead of categorical variables, we want to display the geographical distribution of a contin-
uous phenomenon, we need to select a way to encode each value into a color. One potential
solution is applying what is usually called “equal intervals”. The intuition of this method is to
split the range of the distribution, the difference between the minimum and maximum value, into
equally large segments and to assign a different color to each of them according to a palette that
reflects the fact that values are ordered.

6

Using the example of the position of a LSOA in the national ranking of the IMD (imd_rank),
we can calculate these segments, also called bins or buckets, using the library PySAL:

In [8]: classi = ps.Equal_Interval(imd['imd_rank'], k=7)
classi

Out[8]: Equal Interval

Lower Upper Count
===

x[i] <= 4604.857 156
4604.857 < x[i] <= 9185.714 48
9185.714 < x[i] <= 13766.571 30

13766.571 < x[i] <= 18347.429 21
18347.429 < x[i] <= 22928.286 24
22928.286 < x[i] <= 27509.143 14
27509.143 < x[i] <= 32090.000 5

The only additional argument to pass to Equal_Interval, other than the actual variable we
would like to classify is the number of segments we want to create, k, which we are arbitrarily
setting to seven in this case. This will be the number of colors that will be plotted on the map so,
although having several can give more detail, at some point the marginal value of an additional
one is fairly limited, given the ability of the brain to tell any differences.

Once we have classified the variable, we can check the actual break points where values stop
being in one class and become part of the next one:

In [9]: classi.bins

Out[9]: array([4604.85714286, 9185.71428571, 13766.57142857, 18347.42857143,
22928.28571429, 27509.14285714, 32090.])

The array of breaking points above implies that any value in the variable below 4604.9 will get
the first color in the gradient when mapped, values between 4604.9 and 9185.7 the next one, and
so on.

The key characteristic in equal interval maps is that the bins are allocated based on the mag-
nitude on the values, irrespective of how many obervations fall into each bin as a result of it. In
highly skewed distributions, this can result in bins with a large number of observations, while
others only have a handful of outliers. This can be seen in the submmary table printed out above,
where 156 LSOAs are in the first group, but only five of them belong to the one with highest val-
ues. This can also be represented visually with a kernel density plot where the break points are
included as well:

In [10]: # Set up the figure
f, ax = plt.subplots(1)
Plot the kernel density estimation (KDE)
sns.kdeplot(imd['imd_rank'], shade=True)
Add a blue tick for every value at the bottom of the plot (rugs)
sns.rugplot(imd['imd_rank'], alpha=0.5)
Loop over each break point and plot a vertical red line

7

for cut in classi.bins:
plt.axvline(cut, color='red', linewidth=0.75)

Display image
plt.show()

Technically speaking, the figure is created by overlaying a KDE plot with vertical bars for
each of the break points. This makes much more explicit the issue highlighed by which the first
bin contains a large amount of observations while the one with top values only encompasses a
handful of them.

To create a map that displays the colors assigned by the equal interval classification algorithm,
we use a similar approach as with unique values but with some key differences:

In [11]: imd.plot(column='imd_rank', scheme='equal_interval', k=7,
cmap=plt.cm.Blues_r, alpha=1,
edgecolor='w', linewidth=0.1)

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x125b7aa20>

8

Pay attention to the key differences:

• Instead of specifyig categorical as True, we replace it by the argument scheme, which we
will use for all choropleths that require a continuous classification scheme. In this case, we
set it to equal_interval.

• As above, we set the number of colors to 7. Note that we need not pass the bins we calculated
above, the plotting method does it itself under the hood for us.

• As optional arguments, we can change the colormap to a blue gradient, which is one of
the recommended ones by ColorBrewer for a sequential palette. NOTE also how we use
an appropriate palette: imd_rank goes from most to least deprived to, so we apply a palette
(Blues_r, where the _r stands for reverse) for which the smaller values are encoded in darker
blue.

• Equally optional, some of the arguments we learned with basic maps, such as the degree of
transparency, also apply in this context.

Substantively, the map also makes very explicit the fact that many areas are put into the same
bin as the amount of white polygons is very large.

[Optional exercise]
Create an equal interval kde plot and map of the actual score of the IMD (imd_score). Is the

same palette appropriate?
As a bonus, try including a legend in the map, following a similar approach as in unique values

maps.

9

http://colorbrewer2.org/

1.2.3 Quantiles

One solution to obtain a more balanced classification scheme is using quantiles. This, by defini-
tion, assigns the same amount of values to each bin: the entire series is laid out in order and break
points are assigned in a way that leaves exactly the same amount of observations between each of
them. This “observation-based” approach contrasts with the “value-based” method of equal in-
tervals and, although it can obscure the magnitude of extreme values, it can be more informative
in cases with skewed distributions.

Calculating a quantiles classification with PySAL can be done with the following line of code:

In [12]: classi = ps.Quantiles(imd['imd_rank'], k=7)
classi

Out[12]: Quantiles

Lower Upper Count
==

x[i] <= 633.714 43
633.714 < x[i] <= 1335.714 42

1335.714 < x[i] <= 2641.000 43
2641.000 < x[i] <= 5540.143 42
5540.143 < x[i] <= 10355.857 43

10355.857 < x[i] <= 18401.143 42
18401.143 < x[i] <= 32090.000 43

And, similarly, the bins can also be inspected:

In [13]: classi.bins

Out[13]: array([633.71428571, 1335.71428571, 2641. , 5540.14285714,
10355.85714286, 18401.14285714, 32090.])

The visualization of the distribution can be generated in a similar way as well:

In [14]: # Set up the figure
f, ax = plt.subplots(1)
Plot the kernel density estimation (KDE)
sns.kdeplot(imd['imd_rank'], shade=True)
Add a blue tick for every value at the bottom of the plot (rugs)
sns.rugplot(imd['imd_rank'], alpha=0.5)
Loop over each break point and plot a vertical red line
for cut in classi.bins:

plt.axvline(cut, color='red', linewidth=0.75)
Display image
plt.show()

10

And the choropleth also follows a similar pattern, with the difference that we are now using
the scheme “quantiles”, instead of “equal interval”:

In [15]: imd.plot(column='imd_rank', scheme='QUANTILES', alpha=1, k=7, \
cmap=plt.cm.Blues_r,
edgecolor='w', linewidth=0.1)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1261135c0>

11

Note how, in this case, the amount of polygons in each color is by definition much more bal-
anced (almost equal in fact, except for rounding differences). This obscures outlier values, which
get blurred by significantly smaller values in the same group, but allows to get more detail in the
“most populated” part of the distribution, where instead of only white polygons, we can now
discern more variability.

[Optional exercise]
Create a quantile kde plot and map of the actual score of the IMD (imd_score).
As a bonus, make a map with 50% of transparency and no boundary lines.

1.2.4 Fisher-Jenks

Equal interval and quantiles are only two examples of very many classification schemes to encode
values into colors. Although not all of them are integrated into geopandas, PySAL includes several
other classification schemes (for a detailed list, have a look at this link). As an example of a more
sophisticated one, let us create a Fisher-Jenks choropleth:

In [16]: classi = ps.Fisher_Jenks(imd['imd_rank'], k=7)
classi

Out[16]: Fisher_Jenks

Lower Upper Count
===

x[i] <= 2930.000 133
2930.000 < x[i] <= 6946.000 52
6946.000 < x[i] <= 11656.000 39

11656.000 < x[i] <= 16185.000 24
16185.000 < x[i] <= 20719.000 20
20719.000 < x[i] <= 24098.000 18
24098.000 < x[i] <= 32090.000 12

This methodology aims at minimizing the variance within each bin while maximizing that
between different classes.

In [17]: classi.bins

Out[17]: array([2930, 6946, 11656, 16185, 20719, 24098, 32090])

Graphically, we can see how the break points are not equally spaced but are adapting to obtain
an optimal grouping of observations:

In [18]: imd.plot(column='imd_rank', scheme='QUANTILES',
alpha=1, k=7, cmap=plt.cm.Blues_r,
edgecolor='w', linewidth=0.1)

12

http://pysal.readthedocs.org/en/latest/library/esda/mapclassify.html

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x125b42d30>

In [19]: # Set up the figure
f, ax = plt.subplots(1)
Plot the kernel density estimation (KDE)
sns.kdeplot(imd['imd_rank'], shade=True)
Add a blue tick for every value at the bottom of the plot (rugs)
sns.rugplot(imd['imd_rank'], alpha=0.5)
Loop over each break point and plot a vertical red line
for cut in classi.bins:

plt.axvline(cut, color='red', linewidth=0.75)
Display image
plt.show()

13

Technically, however, the way to create a Fisher-Jenks map is exactly the same as before:

In [20]: imd.plot(column='imd_rank', scheme='fisher_jenks',
alpha=1, k=7, cmap=plt.cm.Blues_r,
edgecolor='w', linewidth=0.1)

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x125c55d68>

14

1.3 Raster basemaps

This section requires the additional library rasterio:

In [21]: import rasterio

Since choropleths tend to be based on administrative boundaries which do not necessarily
reflect correctly the topography of a region, it may be of interest to provide a choropleth with
certain geographical context. If data are available, an easy way to deliver this is by plotting a base
raster map underneath the choropleth and allowing some transparency on the upper layer.

To do this in Python, we can combine the plotting of a raster image with the generation of a
choropleth as we have seen above. First, we need to read the raster in:

In [22]: # Open the raster file
src = rasterio.open(liv_path)
Extract the bounds
left, bottom, right, top = src.bounds

At this point we are ready to generate the figure with both layers:

In [23]: # NOTE: this may take a little bit to run depending on your machine

Set up the figure
f, ax = plt.subplots(1, figsize=(9, 9))
Add raster layer
ax.imshow(src.read(1), cmap='gray', extent=(left, right, bottom, top))
Create the choropleth
imd.plot(column='imd_score', cmap='Purples',

linewidth=0.1, alpha=0.75, ax=ax)
Style the labels for the ticks
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
Keep axes proportionate
plt.axis('equal')
Display
plt.show()

15

Note how the way the raster is added to the axis is different that the way we attach a vector
map: the raster gets plotted through imshow (image show), which is a function embedded in the
axis object (ax), while the vector object is appended by passing the axis (ax) through the plotting
method itself.

1.4 Zooming into the map

A general map of an entire region, or urban area, can sometimes obscure particularly local patterns
because they happen at a much smaller scale that cannot be perceived in the global view. One way
to solve this is by providing a focus of a smaller part of the map in a separate figure. Although
there are many ways to do this in Python, the most straightforward one is to reset the limits of the
axes to center them in the area of interest.

As an example, let us consider the quantile map produced above:

In [24]: imd.plot(column='imd_rank', scheme='QUANTILES',

16

alpha=1, k=7, cmap=plt.cm.Blues_r,
edgecolor='w', linewidth=0.1)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x125dc99e8>

If we want to focus on the city centre, say the area of the map more or less between coordinates
387,000 and 391,000 on the vertical axis, and 332,000 and 337,000 on the horizontal one, creating
the figure involves the following:

In [25]: # Setup the figure
f, ax = plt.subplots(1)
Set background color of the axis
ax.set_facecolor('#D5E3D8')
Draw the choropleth
imd.plot(column='imd_rank', scheme='QUANTILES', k=7, \

cmap=plt.cm.Purples_r, ax=ax)
[Optional] Keep axes proportionate
plt.axis('equal')
Redimensionate X and Y axes to desired bounds
ax.set_ylim(387000, 391000)
ax.set_xlim(332000, 337000)
Show image
plt.show()

17

Note how, if we decide to keep the axes proportionate, it needs to be done before resetting the
limits, as otherwise the change will not have an effect.

This notebook, as well as the entire set of materials, code, and data included in this course are
available as an open Github repository available at: https://github.com/darribas/gds17

Geographic Data Science’17 - Lab 3 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

18

https://github.com/darribas/gds17

	Data mapping
	Data
	Choropleths
	Unique values
	Equal interval
	Quantiles
	Fisher-Jenks

	Raster basemaps
	Zooming into the map

