Geographic Data Science -
Lecture VIII

Points


http://darribas.org/

Today

e The point of points
e Point patterns
e Visualization of point patterns



The point of points



Points like polygons

Points can represent "fixed" entities

In this case, points are qualitatively similar to
polygons/lines

The goal here is, taking location fixed, to model other
aspects of the data



Points like polygons

Examples:

e (Cities (In most cases)

e Buildings

e Polygons represented as their centroid
. eeoeo



When points are not polygons

Point data are not only a different geometry than
polygons or lines...

... Points can also represent a fundamentally different
way to approach spatial analysis



Points unlike polygons



A few examples...
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http://www.crimemapping.com/map.aspx?aid=3db8cf99-a73b-46d2-b218-bd24cf491577

NYC Street Trees
by Species

New York City's urban forest provides
numerous environmental and social
benefits, and street trees compose
roughly one quarter of that canopy. This
map shows the distribution and
biodiversity of the city's street trees
based on the last tree census.

Read more.

Dot _is_rou hly roportinal to tree trunk diameter. FILTER BY SPECIES BASE MAP .-

Created by Jill Hubley | Leaflet | Mapbox Terms & Feedback, CartoDB attribution



http://jillhubley.com/project/nyctrees/

UFO Sightings (1933-)
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Geo-tagged tweets

Six billion tweets



http://mapbox.com/
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Point patterns



Point patterns

Distribution of points over a portion of space

Assumption is a point can happen anywhere on that
space, but only happens in specific locations

e Unmarked: locations only
e Marked: values attached to each point



Point Pattern Analysis

Describe, characterize, and explain point patterns,
focusing on their generating process

e Visual exploration
e Clustering properties and clusters

e Statistical modeling of the underlying processes



Visualization of PPs



Visualization of PPs

Two routes (today):

o Aggregate ¢ "Histogram’
e Smooth & KDE



Aggregation



Points meet polygons
Use polygon boundaries and count points per area
[Insert your skills for choropleth mapping here!!!]

But, the polygons need to "make sense” (their
delineation needs to relate to the point generating
process)



0.00 - 108.20
108.20 - 214.40
214.40 - 320.60
O 320.60-426.80
® 426.80-533.00




Hex-binning

If no polygon boundary seems like a good candidate
for aggregation...

...draw a hexagonal (or squared) tesselation!!!

Hexagons...

e Are regular
e Exhaust the space (Unlike circles)
e Have many sides (minimize boundary problems)






But...

(Arbitrary) aggregation may induce MAUP (see
Lecture 4)

_|_

Points usually represent events that affect only part
of the population and hence are best considered as
rates (see Lecture 4)



Kernel Density Estimation



Kernel Density Estimation

Estimate the (continuous) observed distribution of a
variable

e Probability of finding an observation at a given
point

e "Continuous histogram”

e Solves (much of) the MAUP problem, but not the
underlying population issue
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https://en.wikipedia.org/wiki/Kernel_density_estimation#/media/File:Comparison_of_1D_histogram_and_KDE.png

Bivariate (spatial) KDE

Probability of finding observations at a given point in
space

e Bivariate version: distribution of pairs of values
e |n space: values are coordinates (XY), locations
e Continuous "version" of a choropleth



-10

pearsonr = 0.95; p = 9.1e-51







Finding clusters of PPs



Concentrations/agglomerations of points over space,
significantly more so than in the rest of the space
considered

Huge literature spanning spatial analysis, statistics
and computer science. Today, we'll look at...



Density

Based

Spatial
Clustering of
Applications with

Noise



CSCE 420 Communication Project - DBSCAN

Playback isn't supported on this device.
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https://www.youtube.com/watch?v=5E097ZLE9Sg

DBSCAN

(Additional) Pros:

e Not necessarily spatial
e Very fast torun so — scales relatively well —
applicable to large datasets

(Additional) C Ons:

e Not based on any probabilistic model (no
inference)
e Hard to learn about the underlying process
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