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1 Clustering, spatial clustering, and geodemographics

This session covers statistical clustering of spatial observations. Many questions and topics are
complex phenomena that involve several dimensions and are hard to summarize into a single
variable. In statistical terms, we call this family of problems multivariate, as oposed to univariate
cases where only a single variable is considered in the analysis. Clustering tackles this kind of
questions by reducing their dimensionality -the number of relevant variables the analyst needs to
look at- and converting it into a more intuitive set of classes that even non-technical audiences can
look at and make sense of. For this reason, it is widely use in applied contexts such as policymak-
ing or marketting. In addition, since these methods do not require many preliminar assumptions
about the structure of the data, it is a commonly used exploratory tool, as it can quickly give clues
about the shape, form and content of a dataset.

The basic idea of statistical clustering is to summarize the information contained in several
variables by creating a relatively small number of categories. Each observation in the dataset is
then assigned to one, and only one, category depending on its values for the variables originally
considered in the classification. If done correctly, the exercise reduces the complexity of a multi-
dimensional problem while retaining all the meaningful information contained in the original
dataset. This is because, once classified, the analyst only needs to look at in which category every
observation falls into, instead of considering the multiple values associated with each of the vari-
ables and trying to figure out how to put them together in a coherent sense. When the clustering
is performed on observations that represent areas, the technique is often called geodemographic
analysis.

Although there exist many techniques to statistically group observations in a dataset, all of
them are based on the premise of using a set of attributes to define classes or categories of ob-
servations that are similar within each of them, but differ between groups. How similarity within
groups and dissimilarity between them is defined and how the classification algorithm is oper-
ationalized is what makes techniques differ and also what makes each of them particularly well
suited for specific problems or types of data. As an illustration, we will only dip our toes into one
of these methods, K-means, which is probably the most commonly used technique for statistical
clustering.

In the case of analysing spatial data, there is a subset of methods that are of particular interest
for many common cases in Geographic Data Science. These are the so-called regionalization tech-
niques. Regionalization methods can take also many forms and faces but, at their core, they all
involve statistical clustering of observations with the additional constraint that observations need
to be geographical neighbors to be in the same category. Because of this, rather than category, we
will use the term area for each observation and region for each category, hence regionalization, the
construction of regions from smaller areas.
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In [1]: %matplotlib inline

import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cluster
import pysal.contrib.clusterpy as cp

/Users/dani/anaconda/envs/gds/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')

ClusterPy: Library of spatially constrained clustering algorithms

1.1 Data

The dataset we will use in this occasion is an extract from the online website AirBnb. AirBnb is
a company that provides a meeting point for people looking for an alternative to a hotel when
they visit a city, and locals who want to rent (part of) their house to make some extra money. The
website has a continuously updated listing of all the available properties in a given city that cus-
tomers can check and book through. In addition, the website also provides a feedback mechanism
by which both ends, hosts and guests, can rate their experience. Aggregating ratings from guests
about the properties where they have stayed, AirBnb provides additional information for every
property, such as an overall cleanliness score or an index of how good the host is at communicating
with the guests.

The original data are provided at the property level and for the entire London. However, since
the total number of properties is very large for the purposes of this notebook, they have been
aggregated at the Middle Super Output Area (MSOA), a geographical unit created by the Office
of National Statistics. Although the original source contains information for the Greater London,
the vast majority of properties are located in Inner London, so the data we will use is restricted
to that extent. Even in this case, not every polygon has at least one property. To avoid cases of
missing values, the final dataset only contains those MSOAs with at least one property, so there
can be average ratings associated with them.

Our goal in this notebook is to create a classification of areas (MSOAs) in Inner London based
on the ratings of the AirBnb locations. This will allow us to create a typology for the geography of
AirBnb in London and, to the extent the AirBnb locations can say something about the areas where
they are located, the classification will help us understand the geography of residential London a
bit better. One general caveat about the conclusions we can draw from an analysis like this one
that derives from the nature of AirBnb data. On the one hand, this dataset is a good example of
the kind of analyses that the data revolution is making possible as, only a few years ago, it would
have been very hard to obtain a similarly large survey of properties with ratings like this one. On
the other hand, it is important to keep in mind the kinds of biases that these data are subject to
and thus the limitations in terms of generalizing findings to the general population. At any rate,
this dataset is a great example to learn about statistical clustering of spatial observations, both in
a geodemographic as well as in a regionalization.
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As usual, before anything, let us set the paths to where we have downloaded the data:

In [2]: # This will be different on your computer and will depend on where
# you have downloaded the files
path = '../../../../data/airbnb/'

IMPORTANT: the paths above might have look different in your computer. See this introduc-
tory notebook for more details about how to set your paths.

Note that, in this case, the data are provided as two separate files, so you will have to create a
folder (for the example above, named airbnb) and place both there.

The main bulk of data is stored in ilm_abb.geojson (ilm for Inner London MSOAs, abb
for AirBnb). Let us load it first:

In [3]: # Read GeoJSON file
abb = gpd.read_file(path+'ilm_abb.geojson')
# Manually set CRS (it might work without depending on
# machine, but just in case)
abb.crs = {'init': u'epsg:27700'}
abb.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 320 entries, 0 to 319
Data columns (total 16 columns):
MSOA_id 320 non-null object
accommodates 320 non-null float64
bathrooms 320 non-null float64
bedrooms 320 non-null float64
beds 320 non-null float64
geometry 320 non-null object
number_of_reviews 320 non-null float64
property_count 320 non-null int64
review_scores_accuracy 320 non-null float64
review_scores_checkin 320 non-null float64
review_scores_cleanliness 320 non-null float64
review_scores_communication 320 non-null float64
review_scores_location 320 non-null float64
review_scores_rating 320 non-null float64
review_scores_value 320 non-null float64
reviews_per_month 320 non-null float64
dtypes: float64(13), int64(1), object(2)
memory usage: 40.1+ KB

Note that, in comparison to previous datasets, this one is provided in a new format, .geojson.
GeoJSON files are a plain text file (you can open it on any text editor and see its contents) that fol-
lows the structure of the JSON format, widely used to exchange information over the web, adapted
for geographic data, hence the geo at the front. GeoJSON files have gained much popularity with
the rise of web mapping and are quickly becoming a de-facto standard for small datasets because
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they are simple and easy to read in many different platforms. As you can see above, reading them
in Python is exactly the same as reading a shapefile, for example.

Before we jump into exploring the data, one additional step that will come in handy down
the line. Not every variable in the table is an attribute that we will want for the clustering. In
particular, we are interested in review ratings, so we will only consider those. Hence, let us first
manually write them so they are easier to subset:

In [4]: ratings = ['review_scores_rating', 'review_scores_accuracy',
'review_scores_cleanliness', 'review_scores_checkin',
'review_scores_communication', 'review_scores_location',
'review_scores_value']

1.2 Getting to know the data

The best way to start exploring the geography of AirBnb ratings is by plotting each of them into a
different map. This will give us a univariate perspective on each of the variables we are interested
in.

Since we have many columns to plot, we will create a loop that generates each map for us and
places it on a “subplot” of the main figure:

In [5]: # Create figure and axes (this time it's 9, arranged 3 by 3)
f, axs = plt.subplots(nrows=3, ncols=3, figsize=(12, 12))
# Make the axes accessible with single indexing
axs = axs.flatten()
# Start the loop over all the variables of interest
for i, col in enumerate(ratings):

# select the axis where the map will go
ax = axs[i]
# Plot the map
abb.plot(column=col, ax=ax, scheme='Quantiles', linewidth=0, cmap='Blues')
# Remove axis clutter
ax.set_axis_off()
# Set the axis title to the name of variable being plotted
ax.set_title(col)

# Display the figure
plt.show()
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Before we delve into the substantive interpretation of the map, let us walk through the process
of creating the figure above, which involves several subplots inside the same figure:

• First (L. 2) we set the number of rows and columns we want for the grid of subplots.
• Then we unpack the grid into a flat list (array) for the axes of each subplot that we can loop

over (L. 4).
• At this point, we set up a for loop (L. 6) to plot a map in each of the subplots.
• Within the loop (L. 6-14), we extract the axis (L. 8), plot the choropleth on it (L. 10) and style

the map (L. 11-14).
• Display the figure (L. 16).

As we can see, there is substantial variation in how the ratings for different aspects are dis-
tributed over space. While variables like the overall value (review_scores_value) or the com-
munication (review_scores_communication) tend to higher in peripheral areas, others like
the location score (review_scores_location) are heavily concentrated in the city centre.
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Even though we only have seven variables, it is very hard to “mentally overlay” all of them to
come up with an overall assessment of the nature of each part of London. For bivariate correla-
tions, a useful tool is the correlation matrix plot, available in seaborn:

In [6]: _ = sns.pairplot(abb[ratings], kind='reg', diag_kind='kde')

[Optional exercise]
Explore the help and the seaborn tutorial (find it on Google) for the function pairplot and

experiment with some of the parameters. For example, recreate the figure above replacing the
KDE plots with histograms.
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This is helpful to consider uni and bivariate questions such as: what is the relationship between
the overall (rating) and location scores? (Positive) Are the overall ratings more correlated with location
or with cleanliness? (Cleanliness) However, sometimes, this is not enough and we are interested
in more sophisticated questions that are truly multivariate and, in these cases, the figure above
cannot help us. For example, it is not straightforward to answer questions like: what are the main
characteristics of the South of London? What areas are similar to the core of the city? Are the East and
West of London similar in terms of the kind of AirBnb properties you can find in them? For these kinds
of multi-dimensional questions -involving multiple variables at the same time- we require a truly
multidimensional method like statistical clustering.

1.3 An AirBnb geodemographic classification of Inner London using K-means

A geodemographic analysis involves the classification of the areas that make up a greographical
map into groups or categories of observations that are similar within each other but different
between them. The classification is carried out using a statistical clustering algorithm that takes
as input a set of attributes and returns the group (“labels” in the terminology) each observation
belongs to. Depending on the particular algorithm employed, additional parameters, such as
the desired number of clusters employed or more advanced tuning parameters (e.g. bandwith,
radius, etc.), also need to be entered as inputs. For our geodemographic classification of AirBnb
ratings in Inner London, we will use one of the most popular clustering algorithms: K-means.
This technique only requires as input the observation attributes and the final number of groups
that we want it to cluster the observations into. In our case, we will use five to begin with as this
will allow us to have a closer look into each of them.

Although the underlying algorithm is not trivial, running K-means in Python is fairly straight-
forward thanks to scikit-learn. Similar to the extensive set of available algorithms in the
library, its computation is a matter of two lines of code. First, we need to specify the parameters in
the KMeans method (which is part of scikit-learn’s cluster submodule). Note that, at this
point, we do not even need to pass the data:

In [7]: kmeans5 = cluster.KMeans(n_clusters=5)

This sets up an object that holds all the parameters required to run the algorithm. In our case,
we only passed the number of clusters, but there are several other ones set by default:

In [8]: kmeans5

Out[8]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
n_clusters=5, n_init=10, n_jobs=1, precompute_distances='auto',
random_state=None, tol=0.0001, verbose=0)

To actually run the algorithm on the attributes, we need to call the fit method in kmeans13:

In [9]: # This line is required to obtain the same results always
np.random.seed(1234)
# Run the clustering algorithm
k5cls = kmeans5.fit(abb[ratings])

The k5cls object we have just created contains several components that can be useful for an
analysis. For now, we will use the labels, which represent the different categories in which we
have grouped the data. Remember, in Python, life starts at zero, so the group labels go from zero
to four. Labels can be extracted as follows:
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In [10]: k5cls.labels_

Out[10]: array([3, 0, 4, 0, 3, 0, 4, 4, 0, 0, 3, 0, 4, 3, 0, 0, 4, 4, 0, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 4, 0, 3, 0, 0, 4, 0, 3, 4, 0, 0, 0, 0, 4, 0, 0, 0,
0, 0, 3, 4, 0, 0, 0, 4, 0, 0, 0, 4, 2, 2, 3, 3, 3, 3, 4, 3, 4, 0, 0,
0, 0, 0, 3, 3, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0,
0, 4, 0, 0, 3, 0, 3, 0, 3, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,
3, 3, 3, 3, 0, 3, 3, 0, 0, 3, 4, 3, 0, 0, 3, 3, 0, 3, 0, 0, 3, 4, 4,
4, 4, 3, 4, 3, 4, 4, 0, 4, 4, 3, 0, 0, 0, 0, 0, 4, 3, 4, 2, 0, 1, 0,
3, 2, 2, 2, 4, 3, 0, 0, 3, 0, 4, 4, 3, 0, 4, 2, 4, 0, 0, 0, 3, 4, 4,
3, 0, 1, 4, 0, 0, 0, 0, 0, 4, 4, 3, 0, 3, 3, 3, 0, 3, 3, 3, 3, 0, 3,
0, 2, 3, 4, 0, 4, 3, 4, 4, 4, 0, 4, 0, 4, 0, 0, 0, 3, 0, 3, 3, 3, 4,
3, 3, 3, 3, 2, 0, 0, 0, 3, 2, 3, 3, 3, 3, 3, 3, 0, 4, 0, 0, 3, 0, 4,
0, 3, 4, 0, 4, 0, 0, 4, 4, 4, 0, 4, 4, 0, 0, 2, 0, 4, 4, 0, 4, 4, 4,
4, 0, 4, 3, 4, 2, 0, 3, 4, 0, 3, 3, 2, 3, 0, 0, 3, 2, 3, 3, 3, 0, 3,
3, 3, 3, 3, 0, 0, 0, 3, 0, 3, 0, 3, 0, 0, 3, 4, 4, 4, 3, 0, 4], dtype=int32)

Each number represents a different category, so two observations with the same number be-
long to same group. The labels are returned in the same order as the input attributes were passed
in, which means we can append them to the original table of data as an additional column:

In [11]: abb['k5cls'] = k5cls.labels_

1.3.1 Mapping the categories

To get a better understanding of the classification we have just performed, it is useful to display
the categories created on a map. For this, we will use a unique values choropleth, which will
automatically assign a different color to each category:

In [12]: # Setup figure and ax
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot unique values choropleth including a legend and with no boundary lines
abb.plot(column='k5cls', categorical=True, legend=True, linewidth=0, axes=ax)
# Remove axis
ax.set_axis_off()
# Keep axes proportionate
plt.axis('equal')
# Add title
plt.title('AirBnb Geodemographic classification for Inner London')
# Display the map
plt.show()

/Users/dani/anaconda/envs/gds/lib/python2.7/site-packages/geopandas/plotting.py:229: FutureWarning: 'axes' is deprecated, please use 'ax' instead (for consistency with pandas)
"(for consistency with pandas)", FutureWarning)
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The map above represents the geographical distribution of the five categories created by the K-
means algorithm. A quick glance shows a strong spatial structure in the distribution of the colors:
group three (brown) is mostly found in the city centre and barely in the periphery, while group
two (orange) is the opposite. Group zero (red) is an intermediate one, while group three (brown)
and one (green) are much smaller, containing only a small number of observations.

1.3.2 Exploring the nature of the categories

Once we have a sense of where and how the categories are distributed over space, it is also useful
to explore them statistically. This will allow us to characterize them, giving us an idea of the kind
of observations subsumed into each of them. As a first step, let us find how many observations
are in each category. To do that, we will make use of the groupby operator introduced before,
combined with the function size, which returns the number of elements in a subgroup:

In [13]: k5sizes = abb.groupby('k5cls').size()
k5sizes
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Out[13]: k5cls
0 132
1 2
2 14
3 98
4 74
dtype: int64

The groupby operator groups a table (DataFrame) using the values in the column provided
(k5cls) and passes them onto the function provided aftwerards, which in this case is size. Ef-
fectively, what this does is to groupby the observations by the categories created and count how
many of them each contains. For a more visual representation of the output, a bar plot is a good
alternative:

In [14]: _ = k5sizes.plot.bar()

As we suspected from the map, groups varying sizes, with groups zero, three and four being
over 75 observations each, and one and two being under twenty.

In order to describe the nature of each category, we can look at the values of each of the at-
tributes we have used to create them in the first place. Remember we used the average ratings
on many aspects (cleanliness, communication of the host, etc.) to create the classification, so we
can begin by checking the average value of each. To do that in Python, we will rely again on the
groupby operator but, in this case, we will combine it with the function mean:
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In [15]: # Calculate the mean by group
k5means = abb.groupby('k5cls')[ratings].mean()
# Show the table transposed (so it's not too wide)
k5means.T

Out[15]: k5cls 0 1 2 3 4
review_scores_rating 91.959366 50.0 80.693227 88.381725 95.878575
review_scores_accuracy 9.394764 8.0 8.688363 9.099590 9.619290
review_scores_cleanliness 9.228806 5.0 8.634376 8.927268 9.483036
review_scores_checkin 9.575746 7.0 8.997941 9.364621 9.813744
review_scores_communication 9.664774 4.0 9.034868 9.466938 9.856405
review_scores_location 9.175812 8.0 7.944803 8.995572 9.300086
review_scores_value 9.084736 5.0 8.178255 8.784636 9.428881

Or we can try to get a more comprehensive description and include also the quartiles and the
standard deviation by calling the function describe instead of simply mean:

In [16]: # Calculate the summary by group
k5desc = abb.groupby('k5cls')[ratings].describe()
# Show the table
k5desc

Out[16]: review_scores_rating review_scores_accuracy \
k5cls
0 count 132.000000 132.000000

mean 91.959366 9.394764
std 1.014482 0.227778
min 90.000000 8.400000
25% 91.165000 9.264319
50% 91.972503 9.400000
75% 92.651961 9.500000
max 93.750000 10.000000

1 count 2.000000 2.000000
mean 50.000000 8.000000
std 14.142136 2.828427
min 40.000000 6.000000
25% 45.000000 7.000000
50% 50.000000 8.000000
75% 55.000000 9.000000
max 60.000000 10.000000

2 count 14.000000 14.000000
mean 80.693227 8.688363
std 2.670005 0.461738
min 73.500000 8.000000
25% 79.796875 8.394886
50% 80.760823 8.669643
75% 82.459524 8.770834
max 83.900000 10.000000

3 count 98.000000 98.000000
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mean 88.381725 9.099590
std 1.367979 0.262952
min 84.967742 8.363636
25% 87.666379 8.974270
50% 88.666667 9.083333
75% 89.495968 9.222222
max 90.096774 9.800000

4 count 74.000000 74.000000
mean 95.878574 9.619290
std 1.718813 0.293210
min 93.960000 8.333333
25% 94.462500 9.500000
50% 95.306818 9.620192
75% 96.972222 9.797369
max 100.000000 10.000000

review_scores_cleanliness review_scores_checkin \
k5cls
0 count 132.000000 132.000000

mean 9.228806 9.575746
std 0.284281 0.211455
min 8.500000 8.833333
25% 9.039365 9.446364
50% 9.226136 9.565034
75% 9.444444 9.700000
max 10.000000 10.000000

1 count 2.000000 2.000000
mean 5.000000 7.000000
std 4.242641 4.242641
min 2.000000 4.000000
25% 3.500000 5.500000
50% 5.000000 7.000000
75% 6.500000 8.500000
max 8.000000 10.000000

2 count 14.000000 14.000000
mean 8.634376 8.997941
std 0.491434 0.454560
min 8.000000 8.000000
25% 8.351562 8.788318
50% 8.621429 9.081169
75% 8.770834 9.269841
max 10.000000 9.750000

3 count 98.000000 98.000000
mean 8.927268 9.364621
std 0.262330 0.315553
min 7.666667 8.000000
25% 8.827257 9.238562
50% 8.959936 9.400000

12



75% 9.070464 9.536825
max 9.571429 10.000000

4 count 74.000000 74.000000
mean 9.483036 9.813744
std 0.282960 0.183103
min 8.750000 9.333333
25% 9.303125 9.700000
50% 9.457516 9.837719
75% 9.666667 10.000000
max 10.000000 10.000000

review_scores_communication review_scores_location \
k5cls
0 count 132.000000 132.000000

mean 9.664774 9.175812
std 0.208680 0.452821
min 8.833333 7.000000
25% 9.529687 8.900000
50% 9.666667 9.166360
75% 9.800000 9.500000
max 10.000000 10.000000

1 count 2.000000 2.000000
mean 4.000000 8.000000
std 0.000000 0.000000
min 4.000000 8.000000
25% 4.000000 8.000000
50% 4.000000 8.000000
75% 4.000000 8.000000
max 4.000000 8.000000

2 count 14.000000 14.000000
mean 9.034868 7.944803
std 0.502796 0.408186
min 8.000000 7.468750
25% 8.702273 7.660714
50% 8.976191 7.954546
75% 9.307142 8.000000
max 10.000000 9.000000

3 count 98.000000 98.000000
mean 9.466938 8.995572
std 0.261650 0.530044
min 8.000000 7.333333
25% 9.366477 8.669118
50% 9.481072 9.012195
75% 9.613005 9.369028
max 10.000000 9.914286

4 count 74.000000 74.000000
mean 9.856405 9.300086
std 0.152300 0.394615
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min 9.333333 8.000000
25% 9.783334 9.000000
50% 9.875000 9.333333
75% 10.000000 9.526316
max 10.000000 10.000000

review_scores_value
k5cls
0 count 132.000000

mean 9.084736
std 0.201922
min 8.428571
25% 8.952238
50% 9.089572
75% 9.215587
max 9.666667

1 count 2.000000
mean 5.000000
std 1.414214
min 4.000000
25% 4.500000
50% 5.000000
75% 5.500000
max 6.000000

2 count 14.000000
mean 8.178255
std 0.278528
min 7.500000
25% 8.022727
50% 8.185714
75% 8.276786
max 8.642857

3 count 98.000000
mean 8.784637
std 0.250596
min 7.666667
25% 8.685854
50% 8.800000
75% 8.909434
max 9.666667

4 count 74.000000
mean 9.428881
std 0.288177
min 8.857143
25% 9.238971
50% 9.410526
75% 9.553031
max 10.000000
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However this approach quickly grows out of hand and the tables become very large to easily
communicate any pattern. A good alternative is to visualize the distribution of values by category.
The following optional extension shows how to transform the data so it is easy to create a fairly
sophisticated plot that summarizes the table above.

[Optional extension]
To do this conveniently, we need to “tidy up” the table of values. Recall the meaning of tidy in

the context of data: a dataset is tidy if every row represents an individual observation and every
column a single variable. The table we want to plot to replace the summary above contains the
following data:

In [17]: # Name (index) the rows after the category they belong
to_plot = abb.set_index('k5cls')
# Subset to keep only variables used in K-means clustering
to_plot = to_plot[ratings]
# Display top of the table
to_plot.head()

Out[17]: review_scores_rating review_scores_accuracy \
k5cls
3 90.000000 9.244681
0 92.000000 9.500000
4 95.526316 9.684211
0 92.000000 9.400000
3 88.857143 9.000000

review_scores_cleanliness review_scores_checkin \
k5cls
3 9.265957 9.531915
0 9.500000 10.000000
4 9.526316 9.894737
0 9.000000 9.800000
3 9.071429 9.571429

review_scores_communication review_scores_location \
k5cls
3 9.542553 9.521277
0 10.000000 10.000000
4 10.000000 9.947368
0 9.600000 9.000000
3 9.428571 9.500000

review_scores_value
k5cls
3 8.914894
0 9.000000
4 9.421053
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0 9.200000
3 8.714286

Following the definition of “tidy data”, the table above does not quality as tidy: the names of
the columns are a variable in itself, the type of rating that the value represents. If we want to tidy
up the table, the column names need to be squeezed into a single column -type of rating. This
operation, in pandas is called to “stack” a table, and can easily be accomplished as follows:

In [18]: to_plot = to_plot.stack()
to_plot.head()

Out[18]: k5cls
3 review_scores_rating 90.000000

review_scores_accuracy 9.244681
review_scores_cleanliness 9.265957
review_scores_checkin 9.531915
review_scores_communication 9.542553

dtype: float64

This returns a multi-indexed object. To keep things simple, we can convert it into a DataFrame
by treating the index as additional columns:

In [19]: to_plot = to_plot.reset_index()
to_plot.head()

Out[19]: k5cls level_1 0
0 3 review_scores_rating 90.000000
1 3 review_scores_accuracy 9.244681
2 3 review_scores_cleanliness 9.265957
3 3 review_scores_checkin 9.531915
4 3 review_scores_communication 9.542553

Finally, we can rename the columns to give them more meaningful names:

In [20]: to_plot = to_plot.rename(columns={'level_1': 'Rating', 0: 'Values'})
to_plot.head()

Out[20]: k5cls Rating Values
0 3 review_scores_rating 90.000000
1 3 review_scores_accuracy 9.244681
2 3 review_scores_cleanliness 9.265957
3 3 review_scores_checkin 9.531915
4 3 review_scores_communication 9.542553

At this point, we are ready to visualize the distribution of values by type of rating by category.
This is done in two steps:

1. Set up of the axis (“facet”) to plot by variable.
2. Building of the plot
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Let us show the code first and we will explain it afterwards:

In [21]: # Setup the facets
facets = sns.FacetGrid(data=to_plot, row='Rating', hue='k5cls', \

sharey=False, sharex=False, aspect=2)
# Build the plot as a `sns.kdeplot`
_ = facets.map(sns.kdeplot, 'Values', shade=True).add_legend()

/Users/dani/anaconda/envs/gds/lib/python2.7/site-packages/statsmodels/nonparametric/kde.py:494: RuntimeWarning: invalid value encountered in divide
binned = fast_linbin(X,a,b,gridsize)/(delta*nobs)

/Users/dani/anaconda/envs/gds/lib/python2.7/site-packages/statsmodels/nonparametric/kdetools.py:32: RuntimeWarning: invalid value encountered in double_scalars
FAC1 = 2*(np.pi*bw/RANGE)**2
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Let us work through the logic of the lines of code above. First, the setup of facets (lines 2-3):

• What we are doing here is creating the “frames” onto which we will later plot. This part is
crucial because here is where we specify the variables that we want to split the dataset into.

• We first pass the tidy dataset (tidy) to the argument data.
• Then we specify the argument row which controls how we will split the table tidy into

plots that will take a different row each. In this case, we use the Rating column because we
want a single plot for each type of rating (one for the overall rating, one for cleanliness, etc.).

• The next argument is hue which is another one to split the data into but, instead of defining
differnt plots (as was the case for row), hue will split the data to create different elements in
the same plot. In our case, this means that the split we specify here, by category (k5cls),
will create different kernel densities within the same plot.

• The arguments sharex and sharey, which are set to False, imply that the scale of the
horizontal and vertical axes respectively is not shared across plots. This makes different
plots not directly comparable with each other, but generates graphs that make the best use
of the available space, resulting in clearer visualizations.

• Finally, aspect controls the ratio of height and width of each plot. By setting it to 2, we
create plots double long than high.

Once the “shell” of the figure is set up, the second part (line 5) provides the visual character-
istics of each of the plots to be created. This is done by calling the function map on the facets
object and specifying the following arguments:

• The first one is the function that we will use to plot the data. Because we want to visualize
the distribution of values for each subgroup, we will use sns.kdeplot, which creates a
kernel density estimation.

• The second one represents, on the data table specified before (tidy in our case), which
values we want to plot. We pass the variable Values.

• Then is additional style arguments for sns.kdeplot. To color the area under the line, we
set shade to True.

• Finally, we add an additional call, outside the map function to include a global legend with
add_legend.

In substantive terms, the visualization shows the differences in each of the ratings by clustering
group. Although in some cases, as in the checkin, these are not very large, others are more useful in
stablishing differences across categories. For example, singles out group two (purple in the plots)
as notably worse than the rest which, if we refer to the map we created above, corresponds with
areas in orange. Both the overall rating and the rating in terms of value (review_scores_value)
establishes a hierarchy of categories by which the best is group three (brown areas in the map),
then goes group zero (red in the map), followed by group four (grey areas in the map), and then
group two (orange in the map). The visualization also makes clear that group one (yellow lines
in the plots, green in the map) contains too little observations and too much noise to provide any
meaningful information.
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This concludes the section on geodemographics. As we have seen, the essence of this approach
is to group areas based on a purely statistical basis: where each area is located is irrelevant for the
label it receives from the clustering algorithm. In many contexts, this is not only permissible but
even desirable, as the interest is to see if particular combinations of values are distributed over
space in any discernible way. However, in other context, we may be interested in created groups
of observations that follow certain spatial constraints. For that, we now turn into regionalization
techniques.

[Optional exercise]
Create a new classification with 10 groups. Compare the output maps between the two solu-

tions.

1.4 Regionalization algorithms

Regionalization is the subset of clustering techniques that impose a spatial constraint on the clas-
sification. In other words, the result of a regionalization algorithm contains areas that are spatially
contiguous. Efectively, what this means is that these techniques aggregate areas into a smaller set
of larger ones, called regions. In this context then, areas are nested within regions. Real world
examples of this phenomenon includes counties within states or, in the UK, local super output
areas (LSOAs) into middle super output areas (MSOAs). The difference between those examples
and the output of a regionalization algorithm is that while the former are aggregated based on
administrative principles, the latter follows a statistical technique that, very much the same as in
the standard statistical clustering, groups together areas that are similar on the basis of a set of
attributes. Only that now, such statistical clustering is spatially constrained.

As in the non-spatial case, there are many different algorithms to perform regionalization, and
they all differ on details relating to the way they measure (dis)similarity, the process to regionalize,
etc. However, same as above too, they all share a few common aspects. In particular, they all take
a set of input attributes and a representation of space in the form of a binary spatial weights matrix.
Depending on the algorithm, they also require the desired number of output regions into which
the areas are aggregated.

To illustrate these concepts, we will run a regionalization algorithm on the AirBnb data we
have been using. In this case, the goal will be to re-delineate the boundary lines of the Inner Lon-
don boroughs following a rationale based on the different average ratings on AirBnb proeperties,
instead of the administrative reasons behind the existing boundary lines. In this way, the result-
ing regions will represent a consistent set of areas that are similar with each other in terms of the
ratings received.

1.4.1 Defining space formally

Very much in the same way as with ESDA techniques, regionalization methods require a formal
representation of space that is statistics-friendly. In practice, this means that we will need to create
a spatial weights matrix for the areas to be aggregated.

Technically speaking, this is the same process as we have seen before, thanks to PySAL. The
difference in this case is that we did not begin with a shapefile, but with a GeoJSON. Unfortunately,
PySAL does not support yet the construction of spatial weights matrix for other formats, so we
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will have to first write the original GeoJSON into a shapefile. Fortunately, this is a fairly easy task
in geopandas:

In [22]: # This will create a shapefile in the same directory
# The warnings have to do with the shortening of the column names,
# so they can be safely ignored
abb.to_file('airbnb_msoas.shp')

Now, creating a contiguity matrix based on a shapefile is one line of code:

In [23]: w = ps.queen_from_shapefile('airbnb_msoas.shp')

WARNING: there is one disconnected observation (no neighbors)
('Island id: ', [29])

In order to use it later, we will store it into a .gal file that we will be able to read later on:

In [24]: fo = ps.open('airbnb_msoas.gal', 'w')
fo.write(w)
fo.close()

1.4.2 Creating regions from areas

At this point, we have all the pieces needed to run a regionalization algorithm. For this example,
we will use the Automated Zoning Procedure (AZP, Openshaw and Rao, 1995), which takes the
set of attributes, the spatial weights, and the desired number of resulting regions. In order to
compare the output with the boroughs of Inner London, we will select the same number, thirteen.

In practical terms, running the AZP is fairly straightforward thanks to clusterpy, a Python
library for spatially constrained clustering. In order to interface with it, we will use the bridge
built in PySAL, which makes data management easier.

We first need to create what clusterpy calls a Layer:

In [25]: layer = cp.Layer()

Then we add the attribute data to the layer. Note that we add the .values argument to pass
an array (a matrix) rather than a table:

In [26]: # First is the matrix of values, then the layer to add it to,
# and then, optionally, the names of the variables we are passing
cp.addArray2Layer(abb[ratings].values, layer, names=ratings)

Adding variables
Done
Adding variables
Done
Adding variables
Done
Adding variables
Done
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Adding variables
Done
Adding variables
Done
Adding variables
Done

Now we can also add the spatial weights matrix:

In [27]: cp.addQueen2Layer('airbnb_msoas.gal', layer)

WARNING: there is one disconnected observation (no neighbors)
('Island id: ', ['29'])

At this point, the layer object contains all the inputs that the clustering algorithm will require,
so we can run the algorithm. For that, we call cluster on the layer, and specify the algorithm we
want (azp), the names of the variables we want to include as attributes (all of them, compiled in
ratings), and the number of resulting regions we want the AZP algorithm to create:

In [28]: # IMPORTANT: depending on the machine it's run,
# running this cell take a while

# Required to obtain always the same results
np.random.seed(1234)
# Clustering algorithm
layer.cluster('azp', ratings, 13, wType='queen')

Getting variables
Variables successfully extracted
Running original AZP algorithm (Openshaw and Rao, 1995)
Number of areas: 320
Number of regions: 13
Disconnected areas neighs: [29]
Constructing regions
initial Solution: [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 8, 8, 8, 8, 12, 8, 8, 12, -1, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 8, 0, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 8, 12, 12, 12, 12, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8, 8, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 10, 10, 12, 10, 12, 10, 12, 10, 10, 10, 10, 3, 12, 12, 12, 12, 12, 12, 3, 12, 3, 5, 12, 2, 12, 6, 6, 6, 6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 11, 11, 12, 12, 11, 11, 1, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 6, 12, 12, 12, 6, 6, 12, 12, 12, 12, 11, 12, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 10, 12, 12, 10, 4, 12, 12, 12, 12, 12, 3, 12, 4, 12, 12, 12, 7, 12, 12, 3, 12, 3, 3, 12, 3, 3, 3, 3, 3, 9, 3, 3, 3, 12, 8, 12, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 11, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11]
initial O.F: 3235.78813767
Performing local search
FINAL SOLUTION: [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 8, 12, 12, 8, 12, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, -1, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 8, 0, 0, 0, 8, 0, 8, 8, 0, 8, 8, 0, 8, 8, 0, 8, 0, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 8, 8, 12, 12, 12, 8, 12, 8, 12, 8, 12, 8, 12, 12, 8, 8, 8, 8, 8, 8, 8, 8, 0, 8, 0, 8, 0, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 10, 10, 11, 10, 12, 3, 12, 10, 10, 10, 3, 3, 12, 11, 12, 12, 12, 3, 3, 12, 3, 5, 12, 2, 12, 6, 6, 6, 6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 1, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 6, 12, 12, 11, 6, 6, 12, 12, 11, 12, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 10, 12, 12, 3, 4, 12, 12, 12, 12, 12, 3, 12, 3, 12, 12, 12, 7, 12, 12, 3, 12, 3, 3, 12, 3, 3, 3, 3, 3, 9, 3, 3, 3, 12, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 11, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11]
FINAL O.F.: 3061.89704166
Done
Adding variables
Done

At this point, the object layer has been added the output of the regionalization. Similarly to
the K-means case, we are really interested only on the resulting labels, which we can extract with
region2areas a similar vector to labels_ in the K-means case:
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In [29]: abb['azp13cls'] = layer.region2areas
abb['azp13cls'].head()

Out[29]: 0 12
1 12
2 12
3 12
4 12
Name: azp13cls, dtype: int64

1.4.3 Mapping the resulting regions

At this point, the column azp13 is no different than k5cls: a categorical variable that can be
mapped into a unique values choropleth. In fact the following code snippett is exactly the same
as before, only replacing the name of the variable to be mapped and the title:

In [30]: # Setup figure and ax
f, ax = plt.subplots(1, figsize=(9, 9))
# Plot unique values choropleth including a legend and with no boundary lines
abb.plot(column='azp13cls', categorical=True, legend=True, linewidth=0, axes=ax)
# Remove axis
ax.set_axis_off()
# Keep axes proportionate
plt.axis('equal')
# Add title
plt.title('AirBnb-based boroughs for Inner London')
# Display the map
plt.show()
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[Optional extension]
The map above gives a very clear impression of the boundary delineation of the AZP algo-

rithm. Hoever, it is still based on the small area polygons. To create the new boroughs “properly”,
we need to dissolve all the polygons in each category into a single one. This is a standard GIS op-
eration that is supported by geopandas and that can be easily actioned with the same groupby
operator we used before. The only additional complication is that we need to wrap it into a sepa-
rate function to be able to pass it on to groupby. We first the define the function dissolve:

In [31]: def dissolve(gs):
'''
Take a series of polygons and dissolve them into a single one

Arguments
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---------
gs : GeoSeries

Sequence of polygons to be dissolved
Returns
-------
dissolved : Polygon

Single polygon containing all the polygons in `gs`
'''
return gs.unary_union

The boundaries for the AirBnb boroughs can then be obtained as follows:

In [32]: # Dissolve the polygons based on `azp13cls`
abb_boroughs = abb['geometry'].groupby(abb['azp13cls']).apply(dissolve)

Which we can plot:

In [33]: # Setup figure and ax
f, ax = plt.subplots(1, figsize=(6, 6))
# Plot boundary lines
for poly in abb_boroughs:

gpd.plotting.plot_multipolygon(ax, poly, facecolor='white', linewidth=0.5)
# Remove axis
ax.set_axis_off()
# Keep axes proportionate
plt.axis('equal')
# Add title
plt.title('AirBnb-based boroughs for Inner London')
# Display the map
plt.show()
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1.4.4 Comparison with the administrative London boroughs

The delineation we have just created can be compared with the administrative boundaries of the
Inner London boroughs. These can be loaded up from the geojson file in the same way as we
did with the original dataset:

In [34]: # Read GeoJSON file
admin_boroughs = gpd.read_file(path+'london_boroughs.geojson')
# Manually set CRS (it might work without depending on
# machine, but just in case)
admin_boroughs.crs = {'init': u'epsg:4326'}
admin_boroughs.head()

Out[34]: color geometry \
0 blue POLYGON ((0.1885882 51.5538749, 0.188310749438...
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1 blue POLYGON ((-0.285151 51.6371097, -0.2851648 51...
2 blue POLYGON ((0.1341785938683765 51.51493117279971...
3 blue POLYGON ((-0.2654891397269057 51.5988648405349...
4 blue POLYGON ((-0.0033685 51.3468601, -0.0030238 51...

name
0 Barking and Dagenham
1 Barnet
2 Bexley
3 Brent
4 Bromley

The table above contains all the boroughs in London. Since our data is focused on Inner Lon-
don, we need the list of boroughs considered part of Inner London to subset it. Let us manually
input it for use later:

In [35]: inner_bor_names = ['Camden', 'Greenwich', 'Hackney', 'Hammersmith and Fulham', \
'Islington', 'Kensington and Chelsea', 'Lambeth', 'Lewisham', \
'Southwark', 'Tower Hamlets', 'Wandsworth', 'Westminster', \
'City of London']

Subsetting the table is more easily done if we index the table on the names. Remember, by
indexing we mean assigning one of the columns as the “name of the rows”:

In [36]: # Index on the name of the boroughs
admin_inner_boroughs = admin_boroughs.set_index('name')
admin_inner_boroughs.head()

Out[36]: color geometry
name
Barking and Dagenham blue POLYGON ((0.1885882 51.5538749, 0.188310749438...
Barnet blue POLYGON ((-0.285151 51.6371097, -0.2851648 51...
Bexley blue POLYGON ((0.1341785938683765 51.51493117279971...
Brent blue POLYGON ((-0.2654891397269057 51.5988648405349...
Bromley blue POLYGON ((-0.0033685 51.3468601, -0.0030238 51...

Onced indexed on names, we reindex it to the list of inner boroughs. Reindexing means replac-
ing the original rows by those with the index that we are passing. In this case, it really means we
are subsetting the table to keep only those in Inner London, but reindexing can do many more
things:

In [37]: admin_inner_boroughs = admin_inner_boroughs.reindex(inner_bor_names)

Finally, one more piece of housekeeping. Since the original file is expressed in raw latitude
and longitude, it is convenient to project it to the same CRS as we have been using:

In [38]: # Projecting the dataset using the same CRS as the original abb table
admin_inner_boroughs = admin_inner_boroughs.to_crs(abb.crs)

And displayed in a similar way as with the newly created ones:
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In [39]: # Setup figure and ax
f, ax = plt.subplots(1, figsize=(6, 6))
# Plot boundary lines
for poly in admin_inner_boroughs['geometry']:

gpd.plotting.plot_multipolygon(ax, poly, facecolor='white', linewidth=0.5)
# Remove axis
ax.set_axis_off()
# Keep axes proportionate
plt.axis('equal')
# Add title
plt.title('Administrative boroughs for Inner London')
# Display the map
plt.show()

[Optional extension]
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In order to more easily compare the administrative and the “regionalized” boundary lines, we
can plot them side by side. To do this, we need to create a figure that contains two subplots. The
rest of the logic is fairly similar to the usual plotting approach:

In [40]: # Setup figure and an axis grid of one row and two columns
f, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
# Split the axs object (a list) into two
ax1 = axs[0]
ax2 = axs[1]

# First axis
# Plot boundary lines
for poly in admin_inner_boroughs['geometry']:

gpd.plotting.plot_multipolygon(ax1, poly, facecolor='white', linewidth=0.5)
# Remove axis
ax1.set_axis_off()
# Keep axes proportionate
ax1.axis('equal')
# Add title
ax1.set_title('Administrative boroughs for Inner London')

# Second axis
# Plot boundary lines
for poly in abb_boroughs:

gpd.plotting.plot_multipolygon(ax2, poly, facecolor='white', linewidth=0.5)
# Remove axis
ax2.set_axis_off()
# Keep axes proportionate
ax2.axis('equal')
# Add title
ax2.set_title('AirBnb defined boroughs for Inner London')
# Display the map
plt.show()
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The code to produce the figure above differs from the usual “single maps” in the following key
aspects:

• When we set up the figure with plt.subplots, we create two subplots and, to align them
horizontally, we specify the number of rows and columns separately.

• The resulting axes object, axs is not a single one but a sequence of them. Because of this,
we can’t plot directly on axs, but we need to access the axis objects explicitly, hence the two
following lines (4 and 5).

• The plotting on each of the axes then proceeds in the same way as if it was a single one, as
this is about what goes into each of the two axes. All you have to make sure is the plotting
is being assigned into the right axis object (ax1 or ax2).

Looking at the figure, there are several similarities and differences between the two maps.
The clearest one is that, while the administrative boundaries have a very balanced size (with the
exception of the city of London), the regions created with AZP are very different in terms of size
between each other. This is a consequence of both the nature of the underlying data and the
algorithm itself. Substantively, this shows how, based on AirBnb, we can observe large areas
that are similar and hence are grouped into the same region, while there also exist pockets with
characteristics different enough to be assigned into a different region.

1.5 Optional exercise (if time permits)

Reproduce with the components of the IMD for Liverpool and compare the output with the dis-
tribution of the IMD scores. This involves the following steps:

• Read in the data.
• Create a geodemographic classification for Liverpool using K-means and all the components

of the IMD (income, employment, education, health, crime, and housing). This is composed
of:

– Run K-means.
– Extract the labels.
– Plot the classes on a map.
– Compare the map obtained from the geodemographic classification with the distribu-

tion of the IMD scores.

• Create a regionalization with the same attribute variables as for the geodemographic classi-
fication and producing 60 resulting observations. This will involve:

– Create the weights for the LSOA geography.
– Run the AZP (or your regionalization algorithm of choice).
– Extract the labels and plot them on a map.
– Compare the resulting map with that of the MSOAs geography, which is available on

the Census data pack under Liverpool/shapefiles/Liverpool_msoa11.shp.

Geographic Data Science’16 - Lab 6 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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