
lab_03_extras

September 20, 2016

1 Data mapping - Extras

This notebook contains additional materials related to Lab 3. These are not compulsory but rather
suggested in case you have extra time and/or interest.

In [1]: %matplotlib inline

import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np
import matplotlib.pyplot as plt

/Users/dani/anaconda/envs/gds/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')

1.1 Data

For this tutorial, we will use the recently released 2015 Index of Multiple Deprivation (IMD) for
England and Wales. This dataset can be most easily downloaded from the CDRC data store (link)
and, since it already comes both in tabular as well as spatial data format (shapefile), it does not
need merging or joining to additional geometries.

Although all the elements of the IMD, including the ranks and the scores themselves, are in
the IMD dataset, we will also be combining them with additional data from the Census, to explore
how deprivation is related to other socio-demographic characteristics of the area. For that we will
revisit the Census Data Pack (link) we used previously.

In order to create maps with a base layer that provides context, we will be using a raster file
derived from OS VectorMap District (Backdrop Raster) and available for download on this link.

As usual, let us set the paths to the folders containing the files before anything so we can then
focus on data analysis exclusively (keep in mind the specific paths will probably be different for
your computer):

In [2]: # This will be different on your computer and will depend on where
you have downloaded the files
imd_shp = '../../../../data/E08000012_IMD/shapefiles/E08000012.shp'
liv_path = 'figs/lab04_liverpool.tif'
data_path = '../../../../data/Liverpool/'

1

https://data.cdrc.ac.uk/dataset/cdrc-english-indices-of-deprivation-2015-geodata-pack-liverpool-e08000012
https://data.cdrc.ac.uk/dataset/cdrc-2011-census-data-packs-for-local-authority-district-liverpool-e08000012
https://www.ordnancesurvey.co.uk/business-and-government/products/vectormap-district.html
http://darribas.org/gds15/content/labs/figs/lab04_liverpool.tif

IMPORTANT: the paths above might have look different in your computer. See this introduc-
tory notebook for more details about how to set your paths.

• IMD data

Now we can load up the IMD data exactly as we did earlier for a shapefile:

In [3]: # Read the file in
imd = gpd.read_file(imd_shp)
Index it on the LSOA ID
imd = imd.set_index('LSOA11CD')
Display summary
imd.info()

<class 'geopandas.geodataframe.GeoDataFrame'>
Index: 298 entries, E01006512 to E01033768
Data columns (total 12 columns):
crime 298 non-null float64
education 298 non-null float64
employment 298 non-null float64
geometry 298 non-null object
health 298 non-null float64
housing 298 non-null float64
idaci 298 non-null float64
idaopi 298 non-null float64
imd_rank 298 non-null int64
imd_score 298 non-null float64
income 298 non-null float64
living_env 298 non-null float64
dtypes: float64(10), int64(1), object(1)
memory usage: 30.3+ KB

Note how on line 4 we index the resulting table imd with the column LSOA11CD. Effectively,
this means we are “naming” the rows, the same way we the columns are named, using the column
LSOA11CD, which contains the unique ID’s of each area. This affords us some nice slicing and
querying capabilities as well as permitting to merge the table with other ones more easily.

Pay attention also to how exactly we index the table: we create a new object that is named in
the same way, imd, but that contains the result of applying the function set_index to the original
object imd. As usual, there are many ways to index a table in Python, but this is one of the most
direct and expressive ones.

• Census data

In order to explore additional dimensions of deprivation, and to have categorical data to dis-
play with “unique values” choropleths, we will use some of the Census data pack. Although most
of the Census variables are continuous, we will transform them to create categorical characteristics.
Remember a categorical variable is one that comprises only a limited number of potential values,
and these are not comparable with each other across a numerical scale. For example, religion

2

begin.html
begin.html

or country of origin are categorical variables. It is not possible to compare their different values
in a quantitative way (religion A is not double or half of religion B) but instead they represent
qualitative differences.

In particular, we are going to use tables QS104EW (Gender) and KS103EW (marital status). The
way these are presented in its raw form is as tabulated counts of each of the possible categories.
Our strategy to turn these into a single categorical variable for each case is to compare the counts
for each area and assign that of the largest case. For example, in the first case, an area will be
labelled as “male” if there are more males than females living in that particular LSOA. In the
case of marital status, although there are more cases, we will simplify and use only “married”
and “single” and assign one or the other on the bases of which ones are more common in each
particular area.

NOTE: the following code snippet involves some data transformations that are a bit more
advanced that what is covered in this course. Simply run them to load the data, but you are not
expected to know some of the coding tricks required in this cell.

In [4]: # Gender breakup
Read table (csv file)
gender = pd.read_csv(data_path+'tables/QS104EW_lsoa11.csv', index_col='GeographyCode')
Rename columns from code to human-readable name
gender = gender.rename(columns={'QS104EW0002': 'Male', \

'QS104EW0003': 'Female'})[['Male', 'Female']]
Create male-female switcher
maj_male = gender['Male'] > gender['Female']
Add "Gender_Majority" variable to table and assign the switcher
gender['Gender_Majority'] = maj_male
Replace `True` values with "Male" and `False` with "Female"
gender.loc[gender['Gender_Majority']==True, 'Gender_Majority'] = 'Male'
gender.loc[gender['Gender_Majority']==False, 'Gender_Majority'] = 'Female'

Status breakup
Read table (csv file)
sinmar = pd.read_csv(data_path+'tables/KS103EW_lsoa11.csv', index_col='GeographyCode')
Rename columns from code to human-readable name
sinmar = sinmar.rename(columns={'KS103EW0002': 'Single', \

'KS103EW0003': 'Married'})[['Single', 'Married']]
Create sigle-married switcher
maj_sin = sinmar['Single'] > sinmar['Married']
Add "Status_Majority" variable to table and assign the switcher
sinmar['Status_Majority'] = maj_sin
Replace `True` values with "Single" and `False` with "Married"
sinmar.loc[sinmar['Status_Majority']==True, 'Status_Majority'] = 'Single'
sinmar.loc[sinmar['Status_Majority']==False, 'Status_Majority'] = 'Married'

Join
both = imd.join(sinmar).join(gender)
Reset the CRS after join
both.crs = imd.crs

3

1.2 [Extension 1] Cartograms

Cartograms are maps that represent the spatial distribution of a variable not by encoding it in a
color palette by rather by modifying geographical objects. There are many algorithms to distort
the shapes of geographical entities according to values, some of them incredibly complicated and
complex.

As an example of how to create a relatively straight-forward cartogram, we will convert poly-
gons into points by using their centroids, and will define the size of the dot proportionally to the
value of the variable we want to display, the IMD score in this case. We will adopt a different
approach to plot points than we have done so far. This involves first extracting the coordinates of
the points:

In [5]: pts = np.array([(pt.x, pt.y) for pt in imd.centroid])

NOTE: The line of code above contains some elements that reflect more advanced Python
programming that we have covered so far, so you should feel free to simply run it to extract the
points.

If you are interested in the logic however, it uses a technique called “list comprehension”,
which can compress and entire for loop into a single line of code, producing more elegant and, to
the trained eye, more readable code. Essentially, the line above can be unpacked into the following
loop:

In [6]: pts = []
for pt in imd.centroid:

pts.append((pt.x, pt.y))
pts = np.array(pts)

Once we have extracted them, we can display them through the command plt.scatter.
This is equivalent to the straightforward plot, or to loop over each point, with the difference that
it will allow us to modify the size of the dots according to a variable:

In [7]: # Plot the dots, using `imd_score` as a variable to modify
the size of each dot
plt.scatter(pts[:, 0], pts[:, 1], s=imd['imd_score'].values)
Keep axes proportionate
plt.axis("equal")
Display
plt.show()

4

The command plt.scatter can also take some of the optional arguments we have learned
before, such as color. Have a look at the help of the command (link) and try modifying some of
them to explore changes in the resulting plot.

1.3 [Extension 2 - Advanced] Conditional maps

Conditional maps are an attempt to explore multivariate relationships within a choropleth map-
ping context. In essence, they are figures composed by several choropleths in which the layout of
each of them provides information about the subset of the original dataset represented. The idea
is that a dataset can be subset based on one or two conditional variables, usually categorical, and
only the observations that meet each characteristic are displayed in a given submap. Since they
are combinations of choropleths, they build on everything we have learned about their creation.
As an example, let us create a conditional map of IMD scores based on the dominating gender and
marital status of each area.

From a Python perspective, creating conditional maps is a bit more intricate than simple choro-
pleths because of the conditioning of the data and the arranging of the layout that needs to occur
for the final figure to be produced. To be able to use the facetting machinery available in seaborn,
we need to define a function that generates a choropleth with a given subset of the dataset:

In [8]: def map_subset(vals, db, color=None, norm=True):
'''
Internal function to pass to `FaceGrid` to build a single map
...

5

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter

Arguments

vals : Series

Values of the subplot to be mapped
db : GeoDataFrame

Table with geometries
color : None
'''
ax = plt.gca()
for poly in db['geometry']:

gpd.plotting.plot_multipolygon(ax, poly, facecolor='grey', linewidth=0.)
vari = vals.name
if norm:

db.reindex(vals.index).plot(column=vari, ax=ax, cmap='Blues', linewidth=0., \
vmin=db[vari].min(), vmax=db[vari].max())

else:
db.reindex(vals.index).plot(column=vari, ax=ax, cmap='Blues', linewidth=0.)

ax.set_axis_off()
plt.axis('equal')

With this function in hand, we can use it to pass it on to the facetting functionality in seaborn,
which then takes care of the actual subsetting of the data and proper alignment of the output
figures:

In [9]: %%time
g = sns.FacetGrid(both, row="Gender_Majority", col="Status_Majority", \

margin_titles=True, size=5)
g.map(map_subset, "imd_score", db=both)
plt.tight_layout()
plt.show()

6

CPU times: user 13.3 s, sys: 391 ms, total: 13.6 s
Wall time: 12.7 s

The figure contains a few interesting elements:

• The distribution of areas with different characteristics is not random over space but rather
follows a specific pattern. For example, the majority of married/female areas are located
in the periphery of the city, while most of the single/male LSOAs can be found in the city
centre.

• Since the color scale is common across maps, we can compare the degree of deprivation for
different combinations. For example, areas with a more married population display consis-
tently lower levels of deprivation than those where singles prevail.

7

Although conditional maps are a powerful tool to explore a dataset and generate hypotheses
about multivariate relationships, it is important to keep in mind these can only be suggestive. A
more formal analysis, such as one based on regression, would be required to establish more robust
conclusions, as several confounding factors can be at play.

1.4 [Extension 3 - Advanced] MAUP

Although arguably a bit more advanced, if you are curious how the maps that exemplify the
Modifiable Areal Unit Problem (MAUP) in the lecture slides, you can find a notebook illustrating
it on this link:

https://gist.github.com/darribas/8b5a7b93d4085223f1c5#
file-maup-ipynb

1.5 [Extension 4] Maps from lecture slides

• Unique values

In [10]: f, ax = plt.subplots(1, figsize=(9, 9))
both.plot(column='Status_Majority', categorical=True, legend=True, ax=ax, \

linewidth=0.1, cmap='Set3')
ax.set_title('Status Majority')
plt.axis('equal')
#plt.savefig('../lectures/figs/l04_unique_values.png')
plt.show()

8

https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
https://gist.github.com/darribas/8b5a7b93d4085223f1c5#file-maup-ipynb
https://gist.github.com/darribas/8b5a7b93d4085223f1c5#file-maup-ipynb

• Choropleth classifiers

In [11]: def plot_scheme(scheme, var, db, figsize=(16, 8), saveto=None):
'''
Plot the distribution over value and geographical space of variable `var` using scheme `scheme
...

Arguments

scheme : str

Name of the classification scheme to use
var : str

Variable name
db : GeoDataFrame

Table with input data

9

figsize : Tuple
[Optional. Default = (16, 8)] Size of the figure to be created.

saveto : None/str
[Optional. Default = None] Path for file to save the plot.

'''
from pysal.esda.mapclassify import Quantiles, Equal_Interval, Fisher_Jenks
schemes = {'equal_interval': Equal_Interval, \

'quantiles': Quantiles, \
'fisher_jenks': Fisher_Jenks}

classi = schemes[scheme](db[var], k=7)
f, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)
KDE
sns.kdeplot(db[var], shade=True, ax=ax1)
sns.rugplot(db[var], alpha=0.5, ax=ax1)
for cut in classi.bins:

ax1.axvline(cut, color='red', linewidth=0.75)
ax1.set_title('Value distribution')
Map
p = db.plot(column=var, scheme=scheme, alpha=0.75, k=7, \

cmap=plt.cm.Blues_r, ax=ax2, linewidth=0.1)
ax2.axis('equal')
ax2.set_axis_off()
ax2.set_title('Geographical distribution')
f.suptitle(scheme, size=25)
if saveto:

plt.savefig(saveto)
plt.show()

In [12]: plot_scheme('equal_interval', 'imd_rank', imd)

10

• Conditional map

In [13]: plot_scheme('quantiles', 'imd_rank', imd)

Geographic Data Science’16 - Lab 3 (Extras) by Dani Arribas-Bel is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

11

	Data mapping - Extras
	Data
	[Extension 1] Cartograms
	[Extension 2 - Advanced] Conditional maps
	[Extension 3 - Advanced] MAUP
	[Extension 4] Maps from lecture slides

