Geographic Data Science -Lecture IX Causal Inference Dani Arribas-Bel

Today

- Correlation Vs Causation
- Causal inference
- Why/when causality matters
- Hurdles to causal inference & strategies to overcome them

Correlation Vs Causation

"Association breeds similarity" (sometimes) Nasir bin Olu Dara Jones (a.k.a. Nas)

Correlation Vs Causation Two fundamental ways to look at the relationship between

two (or more) variables:

Correlation Vs Causation Two fundamental ways to look at the relationship between

two (or more) variables:

Correlation

Two variables have **co-movement**. If we know the value of one, we know something about the value of the other one.

Correlation Vs Causation Two fundamental ways to look at the relationship between

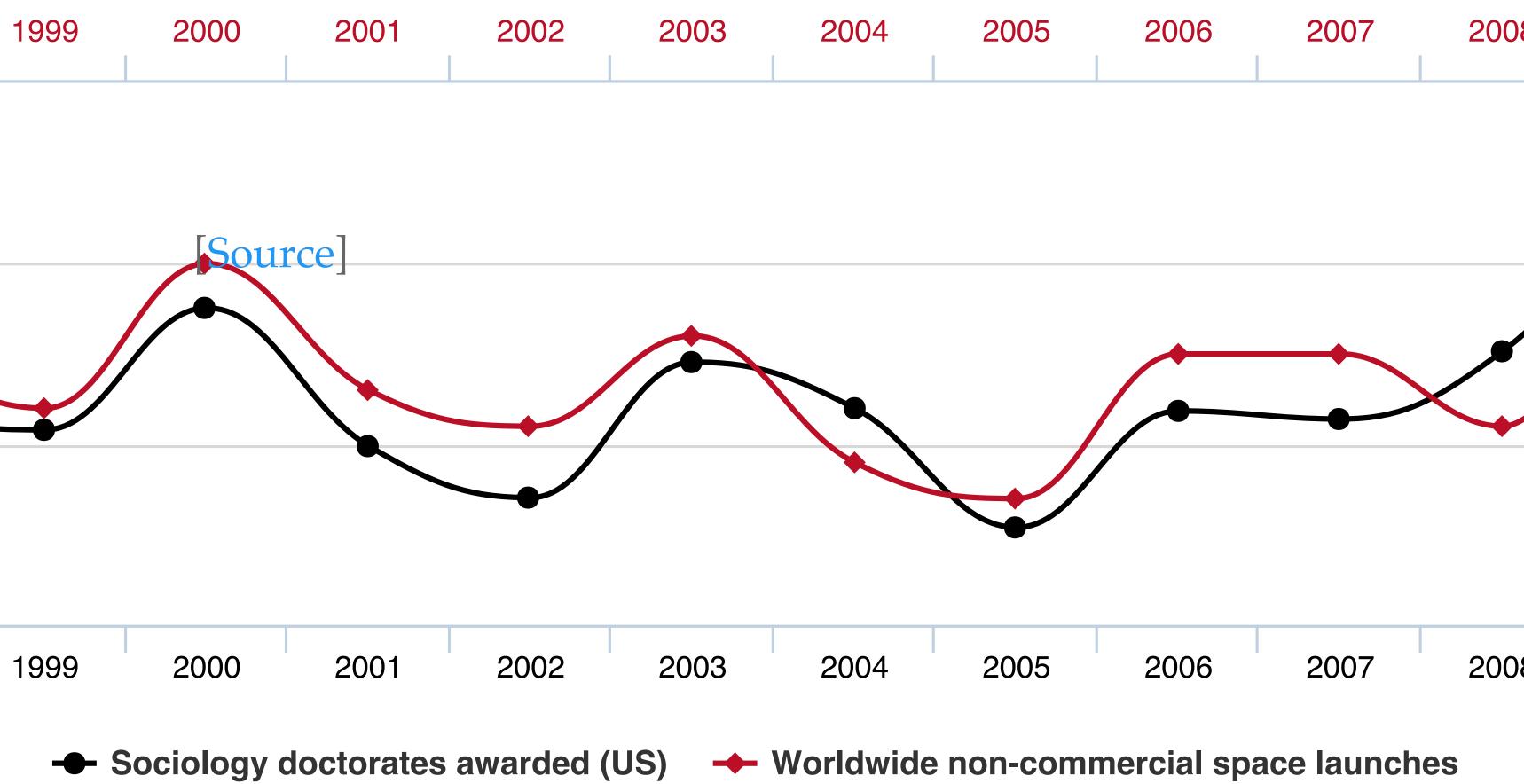
- two (or more) variables:
- Correlation
- Two variables have **co-movement**. If we know the value of one, we know something about the value of the other one. Causation
- There is a **"cause-effect"** link between the two and, as a result, they display co-movement.

Correlation Vs Causation

- Both are useful, but for different purposes
- Causation *implies* correlation but **not** the other way around
- It is vital to keep this distinction in mind for meaningful and credible analysis

Sign correlation? Causal link?

- Temperature and ice-cream consumption
- Non-commercial space launches & Sociology PhDs awarded
- Crime & policing
- IMD Moran Plot in Liverpool

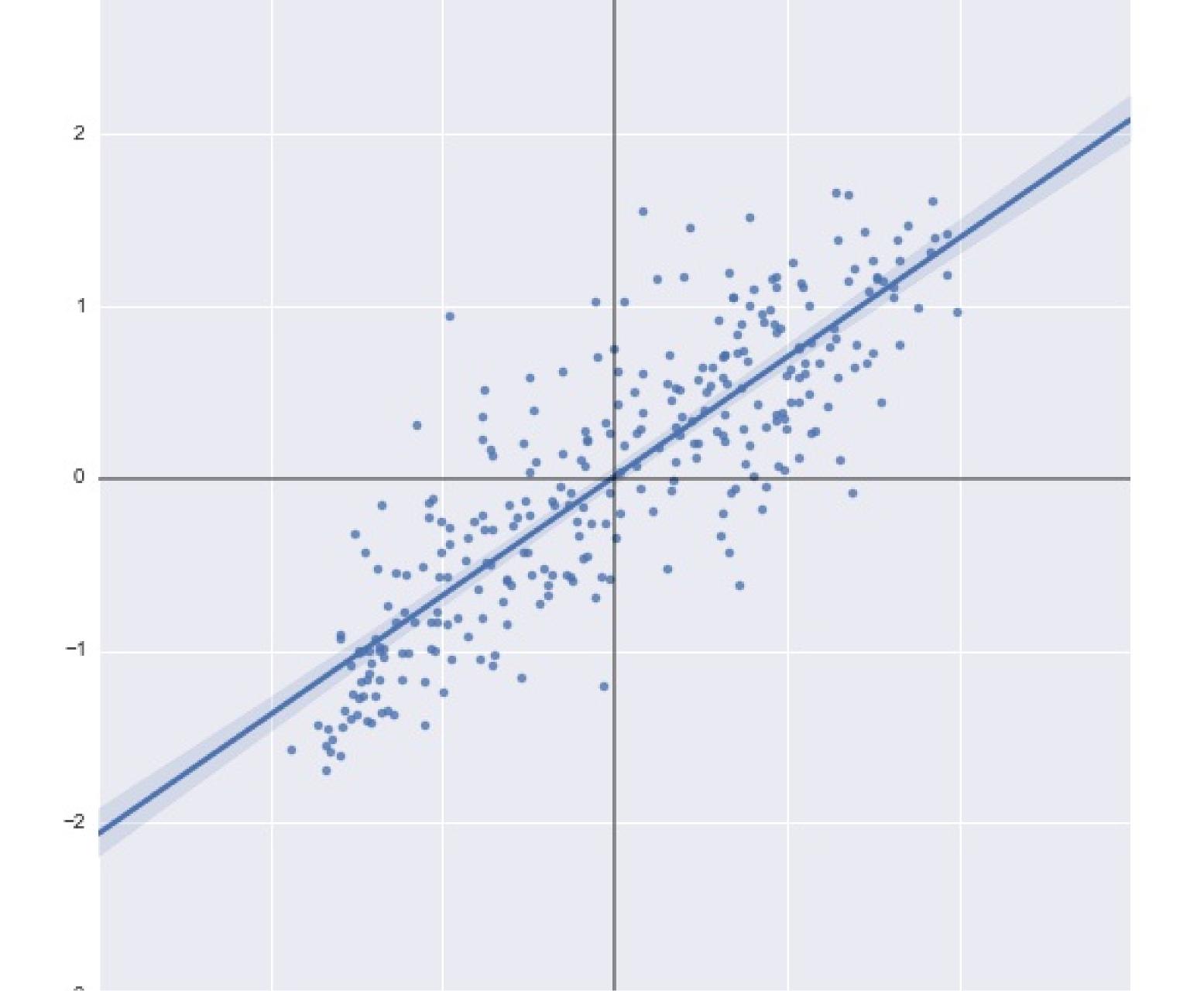


Sign correlation? Causal link?

- Temperature and ice-cream consumption → **Positive**. Positive.
- Non-commercial space launches & Sociology PhDs awarded
- Crime & policing
- IMD Moran Plot in Liverpool

Worldwide non-commercial space launches correlates with

Sociology doctorates awarded (US)



Positive or negative correlation? Causal link?

- Temperature and ice-cream consumption → **Positive**. **Positive**.
- Non-commercial space launches & Sociology PhDs awarded \rightarrow **Positive**. None.
- Crime & policing
- IMD Moran Plot in Liverpool

Positive or negative correlation? Causal link?

- Temperature and ice-cream consumption → **Positive**. **Positive**.
- Non-commercial space launches & Sociology PhDs awarded \rightarrow **Positive**. None.
- Crime & policing → **Positive**. Negative.
- IMD Moran Plot in Liverpool

Positive or negative correlation? Causal link?

- Temperature and ice-cream consumption → **Positive**. **Positive**.
- Non-commercial space launches & Sociology PhDs awarded \rightarrow **Positive**. None.
- Crime & policing → **Positive**. Negative.
- IMD Moran Plot in Liverpool → **Positive**. **?**

Causal inference

Why/When get causal?

Why

- Most often, we are interested in understanding the processes that generate the world, not only in observing its outcomes
- Many of these processes are only **indirectly observable** through **outcomes**
- The only way to link both is through **causal channels**

When

Essentially when the **core interest** is to find out if something *causes* something else

- Policy interventions
- Medical trials
- Business decisions (product / feature development...)
- Empirical (Social) Sciences

•

When not (necessarily)

When not (necessarily) Exploratory analysis

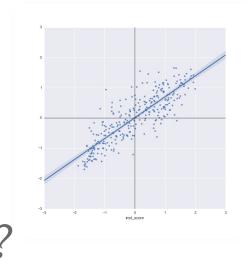
When you are not sure what you are after, inferring causality might be too high of a price to pay to get a sense of the main relationships

When not (necessarily) Exploratory analysis

When you are not sure what you are after, inferring causality might be too high of a price to pay to get a sense of the main relationships

Predictive settings

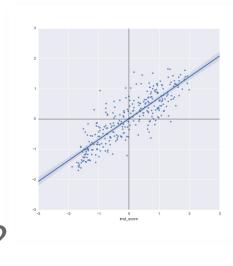
Interest not in understanding the underlying mechanisms but want to obtain **best possible estimates** of a variable you do not have by combining others you do have E.g. Population density in a specific point using population density in all available nearby locations


Causation *implies* Correlation

Correlation *does not imply* Causation

Why?

Causation *implies* Correlation


Correlation *does* not imply Causation

Why?

Causation *implies* Correlation

Correlation *does not imply* Causation

- Reverse causality
- Confounding factors/endogeneity

Reverse causality

There *is* a causal link between the two variables but it either runs the oposite direction as we think, or runs in both

Reverse causality

There *is* a causal link between the two variables but it either runs the oposite direction as we think, or runs in both E.g. Education and income

Confounding factors

Two variables are correlated because they are *both* determined by other, unobserved, variables (factors) that *confound* the effect

Confounding factors

Two variables are correlated because they are *both* determined by other, unobserved, variables (factors) that *confound* the effect

E.g. Ice cream and cold beverages consumption

Strategies

Is there any way to overcome reverse causality and confounding factors to recover causal effects?

Is there any way to overcome reverse causality and confounding factors to recover causal effects?

The key is to get an *exogenous source of variation*

Strategies

Strategies Randomized Control Trials *Treated* and *control* groups Probability of treatment is independent of everything else

Strategies

- Randomized Control Trials
- *Treated* and *control* groups
- Probability of treatment is independent of everything else
- Quasi-natural experiments
- Like a RCT, but that just "happen to occur naturally" (natural
- dissasters, exogenous law changes...)

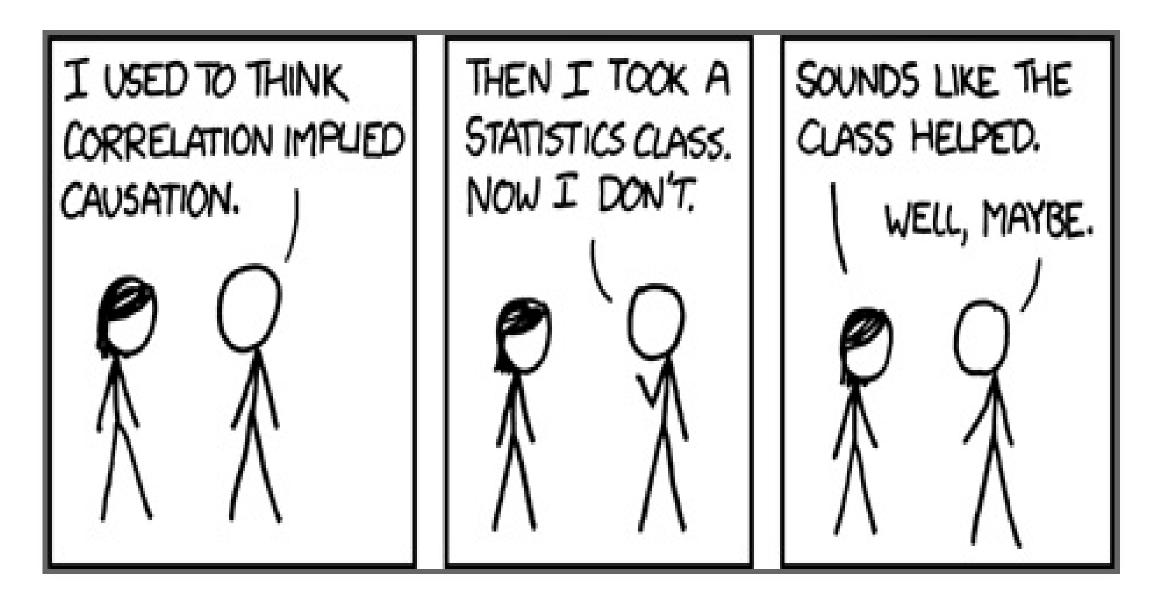
Strategies

- Randomized Control Trials
- *Treated* and *control* groups
- Probability of treatment is independent of everything else
- Quasi-natural experiments
- Like a RCT, but that just "happen to occur naturally" (natural dissasters, exogenous law changes...)
- Econometric techniques
- For the interested reader: space-time regression, instrumental variables, propensity score matching, differences-in-differences, regression discontinuity...

Establishing **causality is much harder** than identifying correlation, and sometimes it is just not possible with a given dataset (e.g. many observational surveys).

at all? entifying le with a s).

Establishing causality is much harder than identifying correlation, and sometimes it is just not possible with a given dataset (e.g. many observational surveys).


... correlation most often *precludes* causation and, depending on the application / analysis, it is all that is needed.

Establishing causality is much harder than identifying correlation, and sometimes it is just not possible with a given dataset (e.g. many observational surveys).

... correlation most often *precludes* causation and, depending on the application / analysis, it is all that is needed. It is important to always draw **conclusions based on analysis**, know what the data can and cannot tell, and stay honest.

Recapitulation

- Correlation does NOT imply causation
- Causality implies more than correlation, a direct effect channel that is harder to identify but might be worthwhile
- There are several techniques to identify causality, all usually based on obtaining exogenous sources of variation
- You don't always need causality

[Source]

Geographic Data Science'15 - Lecture 10 by Dani Arribas-Bel is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.