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Today

e The point of points
e Point patterns
e Visualization of point patterns



The point of points
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Points like polygons

Points can represent "fixed' entities

In this case, points are qualitatively similar to

polygons/lines

The goal here is, taking location fixed, to model other

aspects of the data
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Examples:

e Cities (in most cases)
e Buildings
e Polygons represented as their centroid
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When points are not

polygons

Point data are not only a different geometry than polygons

or lines...

... Points can also represent a fundamentally ditferent way

to approach spatial analysis
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e Rather than exhausting the entire space, points can be
events subject to occur anywhere
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Points unlike polygons

e Rather than exhausting the entire space, points can be
events subject to occur anywhere

e The location of the event is part of what we are trying to
understand / model

e The interest focuses on characterizing the pattern that the
points follow over space



A tew examples...
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New York City's urban forest provides

numerous environmental and social
benefits, and street trees compose
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http://jillhubley.com/project/nyctrees/
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Geo-tagged tweets

Six billion tweets
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Point patterns

Distribution of points over a portion of space

Assumption is a point can happen anywhere on that space,

but only happens in specific locations



Point patterns

Distribution of points over a portion of space
Assumption is a point can happen anywhere on that space,
but only happens in specific locations

 Unmarked: locations only
e Marked: values attached to each point



Point Pattern Analysis

Describe, characterize, and explain point patterns, focusing

on their generating process

e Visual exploration
e Clustering properties
e Statistical modeling of the underlying processes
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Visualization of PPs

Two routes (today):

o Aggregate <> "Histogram”
o Smooth <= KDE



Aggregation



Points meet polygons
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Use polygon boundaries and count points per area
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Points meet polygons
Use polygon boundaries and count points per area

[Insert your skills for choropleth mapping here!!!]

But, the polygons need to “make sense” (their delineation

needs to relate to the point generating process)
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Hex-binning
If no polygon boundary seems like a good candidate for

aggregation...



Hex-binning
If no polygon boundary seems like a good candidate for

aggregation...

...draw a hexagonal (or squared) tesselation!!!



Hex-binning
If no polygon boundary seems like a good candidate for

aggregation...
...draw a hexagonal (or squared) tesselation!!!

Hexagons...

o Are regular
e Exhaust the space (Unlike circles)
e Have many sides (minimize boundary problems)
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But...



But...

(Arbitrary) aggregation may induce MAUP (see Lecture 4)
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(Arbitrary) aggregation may induce MAUP (see Lecture 4)
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But...

(Arbitrary) aggregation may induce MAUP (see Lecture 4)

_I_

Points usually represent even

s that affect to only part of the

population and hence are bes:
Lecture 4)

- considered as rates (see



Kernel Density Estimation



Kernel Density Estimation

Estimate the (continuous) observed distribution of a variable



Kernel Density Estimation

Estimate the (continuous) observed distribution of a variable

e Probability of finding an observation at a given point
 "Continuous histogram"
e Solves (much of) the MAUP problem, but not the

underlying population issue
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https://en.wikipedia.org/wiki/Kernel_density_estimation#/media/File:Comparison_of_1D_histogram_and_KDE.png

Bivariate (spatial) KDE

Probability of finding observations at a given point in space

e Bivariate version: distribution of pairs of values
e In space: values are coordinates (XY), locations
e Continuous "version" of a choropleth
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pearsonr = 0.95; p = 9.1e-51










Recapitulation

e Points can be understood as a fixed or random process
over space

e If seen as a random, where points are located is part of the
interest in the (point pattern) analysis

e Visualization of point patterns can be done through
aggregation or smoothing (but issues relating to the
MAUP and underlying populations need to be kept in
mind!)
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