
lab 09

December 2, 2015

1 Points

Points are spatial entities that can be understood in two fundamentally different ways. On the one hand,
points can be seen as fixed objects in space, which is to say their location is taken as given (exogenous).
In this case, analysis of points is very similar to that of other types of spatial data such as polygons and
lines. On the other hand, points can be seen as the occurence of an event that could theoretically take
place anywhere but only manifests in certain locations. This is the approach we will adopt in the rest of the
notebook.

When points are seen as events that could take place in several locations but only happen in a few of
them, a collection of such events is called a point pattern. In this case, the location of points is one of the
key aspects of interest for analysis. A good example of a point pattern is crime events in a city: they could
technically happen in many locations but we usually find crimes are committed only in a handful of them.
Point patterns can be marked, if more attributes are provided with the location, or unmarked, if only the
coordinates of where the event occured are provided. Continuing the crime example, an unmarked pattern
would result if only the location where crimes were committed was used for analysis, while we would be
speaking of a marked point pattern if other attributes, such as the type of crime, the extent of the damage,
etc. was provided with the location.

Point pattern analysis is thus concerned with the description, statistical characerization, and modeling of
point patterns, focusing specially on the generating process that gives rise and explains the observed data.
What’s the nature of the distribution of points? Is there any structure we can statistically discern in the way
locations are arranged over space? Why do events occur in those places and not in others? These are all
questions that point pattern analysis is concerned with.

This notebook aims to be a gentle introduction to working with point patterns in Python. As such, it
covers how to read, process and transform point data, as well as several common ways to visualize point
patterns.

In [1]: %matplotlib inline

import numpy as np

import pandas as pd

import geopandas as gpd

import pysal as ps

import seaborn as sns

import matplotlib.pyplot as plt

from shapely.geometry import Point

1.1 Data

We are going to dip our toes in the lake of point data by looking at a sample of geo-referenced tweets in the
city of Liverpool. The dataset we will be playing with contains the location of over 130,000 messages posted
on Twitter from January to the end of October of 2012. A detailed description of the variables included is
provided in the “Datasets” section of the course website, as well as instructions to download it.

1

Once you have downloaded it and extracted the compressed .zip file, let us first set the paths to the
shapefile. In addition, we will also be using the LSOA Census and geography dataset we already know, so
let us add the path in advance to make things easier later on:

In [2]: # This will be different on your computer and will depend on where

you have downloaded the files

Twitter dataset

tw_path = ’../../../../data/tweets/tweets_liverpool/tweets_liverpool.shp’

LSOAs polygons

lsoas_path = ’../../../../data/Liverpool/shapefiles/Liverpool_lsoa11.shp’

Total population counts from Census Geodata Pack

pop_path = ’../../../../data/Liverpool/tables/CT0010_lsoa11.csv’

Since the data are stored in a shapefile, loading it is in the same way as usual:

In [3]: %%time

Read the file

tw = gpd.read_file(tw_path)

Create a brief summary of the columns in the table

tw.info()

<class ’geopandas.geodataframe.GeoDataFrame’>

Int64Index: 131209 entries, 0 to 131208

Data columns (total 12 columns):

DAY 131209 non-null int64

DOW 131209 non-null int64

HOUR 131209 non-null int64

LAT 131209 non-null float64

LON 131209 non-null float64

LSOA11CD 131209 non-null object

MINUTE 131209 non-null int64

MONTH 131209 non-null int64

X 131209 non-null float64

Y 131209 non-null float64

YEAR 131209 non-null int64

geometry 131209 non-null object

dtypes: float64(4), int64(6), object(2)

memory usage: 13.0+ MB

CPU times: user 22.9 s, sys: 507 ms, total: 23.4 s

Wall time: 23.6 s

Note how we have also added the command %%time at the top of the cell. Once the cell has run, this
provides an accurate measurement of the time it took the computer to run the code. We are adding this
because, as you can see in the description of the columns, this is a fairly large table, with 131,209 rows.

Depending on the running time of the cell above, it is recommended you do not use the full dataset but
instead you shorten it and consider only a random sample of tweets (which retains the same properties). If
it took your computer longer than 20 seconds to read the file (as indicated at the end of the cell output,
total), you are strongly encouraged to subset your data by taking a random sample. This will make the
rest of the analysis run much more smoothly on your computer and will result in a better experience. See
below for details on how to do this.

1.1.1 Random sample of tweets

Once we have loaded the data, taking a random sample is a relative simple operation. Let us first perform
the computations and then delve into the steps, one by one.

2

In [4]: # Set the "seed" so every run produces the generates the same random numbers

np.random.seed(1234)

Create a sequence of length equal to the number of rows in the table

ri = np.arange(len(tw))

Randomly reorganize (shuffle) the values

np.random.shuffle(ri)

Reindex the table by using only the first 10,000 numbers

of the (now randomly arranged) sequence

tw = tw.iloc[ri[:10000], :]

Display summary of the new table

tw.info()

<class ’geopandas.geodataframe.GeoDataFrame’>

Int64Index: 10000 entries, 50049 to 86084

Data columns (total 12 columns):

DAY 10000 non-null int64

DOW 10000 non-null int64

HOUR 10000 non-null int64

LAT 10000 non-null float64

LON 10000 non-null float64

LSOA11CD 10000 non-null object

MINUTE 10000 non-null int64

MONTH 10000 non-null int64

X 10000 non-null float64

Y 10000 non-null float64

YEAR 10000 non-null int64

geometry 10000 non-null object

dtypes: float64(4), int64(6), object(2)

memory usage: 1015.6+ KB

Let us walk through the strategy taken to randomly sample the table:

• First we create a separate sequence of numbers starting from zero (Python always starts counting on
zero, not one) as long as the number of rows in the table we want to subset. At this point, this list
starts on 0, then 1, 2, 3, 4, 5, . . . , N -1 (with N the length of the table, that is 131,209).

• Then, in line 4, the list is randomly rearranged. After this, the length is still the same -131,209- but
the order has changed from the original sequence to a completely random one.

• At this point, we can subset the table, which we do in line 7. This command is composed of two
elements: one (ri[:10000]) in which we keep only the first 10,000 elements of the randomly ordered
list (if you wanted to subset the table to have a different number of observations, change that in here);
the second (tw.iloc) is a standard subsetting query as we have been doing so far.

The trick here is that by querying the table on the subset of 10,000 numbers obtained from a random
draw of the entire set, we are only keeping the rows indexed on those numbers. This attains two things: one,
it returns only 10,000 observations instead of the total 131,209; two, the subset that it does keep is entirely
random, as the index used for it has been randomly “shuffled”.

1.2 Visualization of a Point Pattern

We will spend the rest of this notebook learning different ways to visualize a point pattern. In particular,
we will consider to main strategies: one relies on aggregating the points into polygons, while the second one
is based on creating continuous surfaces using kernel density estimation.

1.2.1 Points meet polygons

Having learned about visualization of lattice (polygon) data, the most straightforward way to visualize point
patterns is to “turn” them into polygons and apply techniques like choropleth mapping to visualize their

3

spatial distribution. To do that, we will overlay a polygon layer on top of the point pattern, join the points
to the polygons by assigning to each point the polygon where they fall into, and create a choropleth of
the counts by polygon. This approach is very intuitive but of course raises the following question: what
polygons do we use to aggregate the points? Ideally, we want a boundary delineation that matches as closely
as possible the point generating process and partitions the space into areas with a similar internal intensity
of points. However, that is usually not the case, no less because one of the main reasons we typically want
to visualize the point pattern is to learn about such generating process, so we would typically not know a
priori whether a set of polygons match it. If we cannot count on the ideal set of polygons to begin with, we
can adopt two more realistic approaches: using a set of pre-existing irregular areas or create a artificial set
of regular polygons.

Irregular lattices To exemplify this approach, we will use the areas of the LSOAs that we have been
working with throughout the course. So, before anything else, let us load them up into an object we will call
lsoas:

In [5]: lsoas = gpd.read_file(lsoas_path).set_index(’LSOA11CD’)

The next step we require is to assign to each tweet the LSOA where it was posted from. This can
be done through a standard GIS operation called point-in-polygon. For the sake of keeping the focus on
the visualization of points, the tweet dataset already includes the LSOA identifier where each tweet falls
into in the column LSOA11CD. However, if you were exploring a brand new dataset and had to join it by
yourself, you could to this in QGIS using the point-in-polygon tool available on the Vector menu (Vector –>
Data Management Tools –> Join Attributes by Location). Alternatively, you could also perform this
operation using geopandas and its “spatial join” extension. Although the latter is a bit more involved and
advanced, it is also more efficient and fast.

Once we have the ID of the polygon where each tweet falls into, creating the count of tweets by polygon
is one line of code away. Again, we rely on the groupby operator which takes all the tweets in the table and
“groups” them “by” their LSOA code. Once grouped, we apply the method size, which counts how many
elements each group has and returns a column indexed on the LSOA code with all the counts as its values.
To make the mapping easier, we also assign the counts to a newly created column in the lsoas table.

In [6]: # Create counts

tw_lsoa = tw.groupby(’LSOA11CD’).size()

Assign counts into a column in the LSOAS table

lsoas[’tweet_count’] = tw_lsoa

At this point, we are ready to map the counts. Technically speaking, this is a choropleth just as we have
seen many times before (see Lab 4 if you need a refresher):

In [7]: # Set up figure and axis

f, ax = plt.subplots(1, figsize=(9, 9))

Plot the equal interval choropleth and add a legend

lsoas.plot(column=’tweet_count’, scheme=’equal_interval’, legend=True, \

axes=ax, colormap=’BuPu’, linewidth=0.1)

Remove the axes

ax.set_axis_off()

Set the title

ax.set_title("Equal Interval of Tweets in Liverpool")

Keep axes proportionate

plt.axis(’equal’)

Draw map

plt.show()

4

[Optional exercise]
Create a similar choropleth as above but use a quantile or Fisher-Jenks classification instead of equal

interval. What are the main differences? Why do you think this is the case? How does it relate to the
distribution of counts by polygons?

The map above clearly shows a concentration of tweets in the city centre of Liverpool. However, it is
important to remember that the map is showing raw counts of tweets. At this point it is useful to remember
what we discussed in Labs 3 and 4 about mapping raw counts. In the case to tweets, as with many other
phenomena that affect to only a portion of the population, it is crucial to keep in mind the underlying
population. Although tweets could theoretically take place anywhere on the map, they really can only
appear in areas where there are people who can post the messages. If population is not distributed equally
(and most often it is not) and we ignore its spatial pattern, the map of raw counts will most likely simply
display the overall pattern of the underlying population. In this example, if all we map is raw counts of

5

tweets, we are showing a biased picture towards areas with high levels of population because, everything else
equal, the more people the more potential for tweets to appear.

To obtain a more accurate picture, what we would like to see is a map of the intensity of tweets, not of
raw counts. To do this, ideally we want to divide the number of tweets per polygon by the total number of
potential population who could tweet at any given moment. This of course is not always available, so we
have to resort to proxy variables. For the sake of this example, we will use the residential population. Let
us first load it up:

In [8]: # Load table with population counts (and other variables too)

pop = pd.read_csv(pop_path, index_col=0)

Total Population is ‘CT00100001‘

pop = pop[’CT00100001’]

pop.head()

Out[8]: GeographyCode

E01006512 1880

E01006513 2941

E01006514 2108

E01006515 1208

E01006518 1696

Name: CT00100001, dtype: int64

Now we can insert it as a new column in the lsoas table:

In [9]: lsoas[’Total_Pop’] = pop

At this point, we can easily calculate the ratio of tweets per resident of each of the areas:

In [10]: lsoas[’tweet_int’] = lsoas[’tweet_count’] / lsoas[’Total_Pop’]

lsoas.head()

Out[10]: geometry tweet count \
LSOA11CD

E01006512 POLYGON ((336103.358 389628.58, 336103.416 389... 171

E01006513 POLYGON ((335173.781 389691.538, 335169.798 38... 494

E01006514 POLYGON ((335495.676 389697.267, 335495.444 38... 101

E01006515 POLYGON ((334953.001 389029, 334951 389035, 33... 47

E01006518 POLYGON ((335354.015 388601.947, 335354 388602... 15

Total Pop tweet int

LSOA11CD

E01006512 1880 0.090957

E01006513 2941 0.167970

E01006514 2108 0.047913

E01006515 1208 0.038907

E01006518 1696 0.008844

With the intensity at hand, creating the new choropleth takes exactly the same as above:

In [11]: # Set up figure and axis

f, ax = plt.subplots(1, figsize=(9, 9))

Plot the equal interval choropleth and add a legend

lsoas.plot(column=’tweet_int’, scheme=’equal_interval’, legend=True, \

axes=ax, colormap=’BuPu’, linewidth=0.1)

Remove the axes

ax.set_axis_off()

6

Set the title

ax.set_title("Equal Interval of Tweet intensity (tweets/resident) in Liverpool")

Keep axes proportionate

plt.axis(’equal’)

Draw map

plt.show()

In this case, the pattern in the raw counts is so strong that the adjustment by population does not have a
huge effect, but in other contexts mapping rates can yield very different results than mapping simple counts.

[Optional exercise]
Create a similar choropleth as above but use a quantile or Fisher-Jenks classification instead of equal

interval. What are the main differences? Why do you think this is the case? How does it relate to the
distribution of counts by polygons?

7

Regular lattices: hex-binning Sometimes we either do not have any polygon layer to use or the ones
we have are not particularly well suited to aggregate points into them. In these cases, a sensible alternative
is to create an artificial topology of polygons that we can use to aggregate points. There are several ways to
do this but the most common one is to create a grid of hexagons. This provides a regular topology (every
polygon is of the same size and shape) that, unlike circles, cleanly exhausts all the space without overlaps
and has more edges than squares, which alleviates edge problems.

Python has a simplified way to create this hexagon layer and aggregate points into it in one shot thanks
to the method hexbin, which is available in every axis object (e.g. ax). Let us first see how you could create
a map of the hexagon layer alone:

In [12]: # Setup figure and axis

f, ax = plt.subplots(1, figsize=(9, 9))

Add hexagon layer that displays count of points in each polygon

hb = ax.hexbin(tw.X, tw.Y, gridsize=50, alpha=0.8, cmap=’BuPu’)

Add a colorbar (optional)

plt.colorbar(hb)

Out[12]: <matplotlib.colorbar.Colorbar instance at 0x116f52a70>

8

See how all it takes is to set up the figure and call hexbin directly using the set of coordinate columns
(tw.X and tw.Y). Additional arguments we include is the number of hexagons by axis (gridsize, 50 for
a 50 by 50 layer), the transparency we want (80%), and the colormap of our choice (BuPu in our case).
Additionally, we include a colorbar to get a sense of what colors imply. Note that we need to pass the name
of the object that includes the hexbin (hb in our case), but keep in mind this is optional, you do not need
to always create one.

Once we know the basics, we can insert it into the usual plotting routine we have been using to generate
a complete hex-bin map of tweets in Liverpool:

In [13]: # Set up figure and axis

f, ax = plt.subplots(1, figsize=(9, 9))

Add a base layer with the LSOA geography

for poly in lsoas[’geometry’]:

gpd.plotting.plot_multipolygon(ax, poly, facecolor=’white’, alpha=0, linewidth=0.1)

Add hexagon layer that displays count of points in each polygon

hb = ax.hexbin(tw.X, tw.Y, gridsize=50, alpha=0.8, cmap=’BuPu’)

Add a colorbar (optional)

plt.colorbar(hb)

Remove axes

ax.set_axis_off()

Add title of the map

ax.set_title("Hex-binning of Tweets in Liverpool")

Keep map proportionate

plt.axis(’equal’)

Draw the map

plt.show()

9

1.2.2 Kernel Density Estimation

NOTE: It is recommended that, for this section, you use the random subset of tweets rather than the entire
batch of 131,209.

Using a hexagonal binning can be a quick solution when we do not have a good polygon layer to overlay
the points directly and some of its properties, such as the equal size of each polygon, can help alleviate
some of the problems with a “bad” irregular topology (one that does not fit the underlying point generating
process). However, it does not get around the issue of the modifiable areal unit problem (M.A.U.P., see
Lecture 4): at the end of the day, we are still imposing arbitrary boundary lines and aggregating based on
them, so the possibility of mismatch with the underlying distribution of the point pattern is very real.

One way to work around this problem is to avoid aggregating altogether. Instead, we can aim at estimating
the continuous observed probability distribution. The most commonly used method to do this is the so called
kernel density estimate (KDE). The idea behind KDEs is to count the number of points in a continious way.
Instead of using discrete counting, where you include a point in the count if it is inside a certain boundary

10

and ignore it otherwise, KDEs use functions (kernels) that include points but give different weights to each
one depending of how far of the location where we are counting the point is.

The actual algorithm to estimate a kernel density is not trivial but its application in Python is extremely
simplified by the use of Seaborn’s kdeplot command. Same as above, let us first see how to create the
simplest possible KDE and then we will create a full-fledge map.

In [14]: sns.kdeplot(tw[’X’], tw[’Y’], n_levels=50, shade=True, cmap=’BuPu’)

Out[14]: <matplotlib.axes. subplots.AxesSubplot at 0x11d0d8d10>

Seaborn greatly streamlines the process and boils it down to a single line. The method sns.kdeplot

(which we can also use to create a KDE of a single variable) takes the X and Y coordinate of the points as
the only compulsory attributes. In addition, we specify the number of levels we want the color gradient to
have (n levels), whether we want to color the space in between each level (share, yes), and the colormap
of choice.

Once we know how the basic logic works, we can insert it into the usual mapping machinery to create a
more complete plot. The main difference here is that we now have to tell sns.kdeplot where we want the
surface to be added (ax in this case).

In [15]: # Set up figure and axes

f, ax = plt.subplots(1, figsize=(9, 9))

Add a base layer with the LSOA geography

for poly in lsoas[’geometry’]:

gpd.plotting.plot_multipolygon(ax, poly, facecolor=’white’, alpha=0, linewidth=0.1)

Generate KDE

sns.kdeplot(tw[’X’], tw[’Y’], ax=ax, \

n_levels=50, shade=True, cmap=’BuPu’)

Remove axes

11

ax.set_axis_off()

Add title

ax.set_title("Hex-binning of Tweets in Liverpool")

Keep axes proportionate

plt.axis(’equal’)

Draw map

plt.show()

1.3 Optional exercise (if time permits)

Reproduce the point analysis above with a different dataset of your choice. This involves:

• Obtain the data.

• Load the data in a notebook.

• If you can find a suitable polygon layer to which aggregate the points:

– Perform a spatial join using QGIS.

12

– Aggregate points into the polygon geography by obtaining counts of points per polygon.

– Create a raw count choropleth.

– If you have a potential measure of the underlying population, create the ratios and generate a
new choropleth.

• Create a Hex binning map of the points.

• Compute and display a kernel density estimate (KDE) of the distribution of the points.

As a suggestion, you can use the following additional datasets:

• House transactions originally provided by the Land Registry.

– Download a sample for Liverpool from this link.

– Note that this is really a marked point pattern although you will be looking at it as if it was an
unmarked point pattern. Think of the implications of this in terms of what you can learn about
it.

• Crime data from data.police.uk.

– Select the date range you want to download data for.

– Choose the Police force you want to analyze (for Liverpool, it will be Merseyside. Note this
includes an area larger than the municipality).

– Note that this is a csv file, not a shapefile. Use skills learnt in Lab 2 to be able to read it. You
can plot the points in the original Coordinate System (lon/lat).

– Bonus if you figure out how to covert the DataFrame into a GeoDataFrame and reproject it to the
UK grid (EPSG:27700). Note this is fairly advanced, so do not despair if you do not get there. A
alternative is to read the csv file in QGIS and save if as a shapefile there, to be read in Python
later on.

Geographic Data Science’15 - Lab 9 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

13

data/house_transactions.zip
https://data.police.uk/data/

	Points
	Data
	Random sample of tweets

	Visualization of a Point Pattern
	Points meet polygons
	Kernel Density Estimation

	Optional exercise (if time permits)

