lab_06

November 4, 2015

1 Spatial autocorrelation and Exploratory Spatial Data Analysis

Spatial autocorrelation has to do with the degree to which the similarity in values between observations in
a dataset is related to the similarity in locations of such observations. Not completely unlike the traditional
correlation between two variables -which informs us about how the values in one variable change as a function
of those in the other- and analogous to its time-series counterpart -which relates the value of a variable at a
given point in time with those in previous periods-, spatial autocorrelation relates the value of the variable
of interest in a given location, with values of the same variable in surrounding locations.

A key idea in this context is that of spatial randomness: a situation in which the location of an observation
gives no information whatsoever about its value. In other words, a variable is spatially random if it is
distributed following no discernible pattern over space. Spatial autocorrelation can thus be formally defined
as the “absence of spatial randomness”, which gives room for two main classes of autocorrelation, similar to
the traditional case: positive spatial autocorrelation, when similar values tend to group together in similar
locations; and negative spatial autocorrelation, in cases where similar values tend to be dispersed and further
apart from each other.

In this session we will learn how to explore spatial autocorrelation in a given dataset, interrogating the
data about its presence, nature, and strength. To do this, we will use a set of tools collectively known
as Exploratory Spatial Data Analysis (ESDA), specifically designed for this purpose. The range of ESDA
methods is very wide and spans from simpler approaches like choropleths and general table querying, to
more advanced and robust methodologies that include statistical inference and an explicit recognition of the
geographical dimension of the data. The purpose of this session is to dip our toes into the latter group.

ESDA techniques are usually divided into two main groups: tools to analyze global, and local spatial
autocorrelation. The former consider the overall trend that the location of values follows, and makes possible
statements about the degree of clustering in the dataset. Do values generally follow a particular pattern in
their geographical distribution? Are similar values closer to other similar values than we would expect from
pure chance? These are some of the questions that tools for global spatial autocorrelation allow to answer.
We will practice with global spatial autocorrelation by using Moran’s I statistic.

Tools for local spatial autocorrelation instead focus on spatial instability: the departure of parts of a map
from the general trend. The idea here is that, even though there is a given trend for the data in terms of the
nature and strength of spatial association, some particular areas can diverege quite substantially from the
general pattern. Regardless of the overall degree of concentration in the values, we can observe pockets of
unusually high (low) values close to other high (low) values, in what we will call hot(cold)spots. Additionally,
it is also possible to observe some high (low) values surrounded by low (high) values, and we will name these
“spatial outliers”. The main technique we will review in this session to explore local spatial autocorrelation
is the Local Indicators of Spatial Association (LISA).

In [1]: Ymatplotlib inline

import seaborn as sns
import pandas as pd
import pysal as ps
import geopandas as gpd
import numpy as np

import matplotlib.pyplot as plt

np.random.seed (123)

1.1 Data

For this session, we will use a classic dataset in the history of spatial analysis: the cholera map by Dr. John
Snow. His story is well known: thanks to his mapping exercise of the location of cholera deaths in XIXth.
Century London, he was able to prove that the disease is in fact transmitted through contaminated water
(associated to a specific pump), as opposed to the conventional thinking of the day, which stated that
transmission occured through the air. Our goal will be to support Snow’s view with the help of ESDA tools.

Although the original data was locations of deaths at the point level, in this case we will access an
aggregated version that reports cholera death counts at the street level. This will allow us to try calculating
spatial weights matrices for a different but also very common type of data, lines. It is also the spatial unit
at which the process we are looking is probably best characterized: since we do not have individual data on
house units, but only the location of those who passed away, aggregating at a unit like the street segment
provides a good approximation of the scale at which the disease was occuring and spreading.

In addition, since the original data are raw counts, we should include a measure of the underlying
population. Remember that if all one maps are the events of interest, unless the population is evenly
distributed, the analysis will be biased because high counts could just be a reflection of a large underlying
population (everything else equal, a street with more people will be more likely to have more cholera deaths).
In the case of this example, the ideal variable would be to have a count of the inhabitants of each street.
Unfortunately, these data are not available, so we need to find an approximation. This will inevitably imply
making assumptions and, potentially, introduce certain degree of measurement error. For the sake of this
example, we will assume that, within the area of central London covered by the data, population was evenly
spread across the street network. This means that the underlying population of one of our street segments
is proportional to its length. Following from this assumption, if we want to control for the underlying
population of a street segment, a good approach could be to consider the number of cholera deaths per
(100) metre(s) -a measure of density- rather than the raw count. It is important to remember that, to the
extent the population was not entirely evenly distributed, this will introduce some error in the analysis, so
conclusions should be drawn with caution if this was a real-world analysis. Since this is an example however,
the results will suffice to learn how to interpret the output of a global and spatial autocorrelation exploratory
analysis.

All the necessary data are available as a single download from the course website on the following link:

http://darribas.org/gds15/content/labs/data/john_snow.zip

The folder contains the street network, point data for the location of the pumps -one of which was
contaminated with cholera- and a polygon file with building blocks from the Ordnance Survey (OS data ©
Crown copyright and database right, 2015). An explanation of the data sources is provided in the companion
text file README. txt.

Once you download it and unpack it into your computer, set the path to its location as we have been
doing on the previous sessions:

In [2]: # This will be different on your computer and will depend on where
you have downloaded the files
js_path = ’../../../../data/john_snow/’

1.1.1 Loading and exploring the data

Although the data are lines instead polygons, we can load and manipulate them in exactly the same terms
as with polygon files:

In [3]: # Load point data
pumps = gpd.read_file(js_path+’Pumps.shp’)

http://darribas.org/gds15/content/labs/data/john_snow.zip

Load building blocks

blocks = gpd.read_file(js_path+’polys.shp’)
Load street network

js = gpd.read_file(js_path+’streets_js.shp’)
Quickly plot the streets
js.plot(colormap=’Setl’)

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x10e320910>

00 +1.807a5

Ton
G600 - II
a0
400
200

200

100

a 100 200 200 400 500 600 00 E00
+5. 295

And, since it is a full-fledge GeoDataFrame, we can also inspect its top rows the same way as with
polygons:

In [4]: js.head()

Out [4]: Deaths Deaths_dens geometry \
0 0 0.000000 LINESTRING (529521 180866, 529516 180862)
1 1 1.077897 LINESTRING (529521 180866, 529592.98 180924.53)
2 0 0.000000 LINESTRING (529521 180866, 529545 180836)
3 0 0.000000 LINESTRING (529516 180862, 529487 180835)
4 26 18.079549 LINESTRING (529516 180862, 529431 180978)
segldStr seg_len

s0-1 6.403124
s0-2 92.773279
s0-3 38.418745
s1-256 39.623226
s1-27 143.808901

> W NN~ O

Before we move on to the analytical part, we can also create choropleth maps for line data in very much
the same way as we have with polygons. In the following code snippet, we build a choropleth using the
Fisher-Jenks classification for the density of cholera deaths in each street segment, and style it by adding a
background color, building blocks and the location of the water pumps:

In [5]: # Set up figure and azis
f, ax = plt.subplots(l, figsize=(9, 9))
Plot building blocks
for poly in blocks[’geometry’]:
gpd.plotting.plot_multipolygon(ax, poly, facecolor=’0.9°, linewidth=0)
Quantile choropleth of deaths at the street level
js.plot(column=’Deaths_dens’, scheme=’fisher_jenks’, axes=ax, \
colormap=’Y1Gn’, legend=True)
Plot pumps
xys = np.array([(pt.x, pt.y) for pt in pumps.geometry])
ax.scatter(xys[:, 0], xys[:, 1], marker=""’, color=’k’, s=50)
Remove azis frame
ax.set_axis_off()
Change background color of the figure
f.set_facecolor(’°0.75°)
Keep azes proportionate
plt.axis(’equal’)
Title
f.suptitle(’Cholera Deaths per 100m.’, size=30)
Draw
plt.show()

[Optional exercise]

Create a similar map as above but using a quantile classification and an equal interval one. How do
the maps differ? How do you think the distribution of values is for this dataset? Confirm your hunch by
generating a density/histogram plot.

1.1.2 Spatial weights matrix

As discused before, a spatial weights matrix is the way geographical space is formally encoded into a numerical
form so it is easy for a computer (or a statistical method) to understand. We have seen already many of

the conceptual ways in which we can define a spatial weights matrix, such as contiguity, distance-based, or
block. Although the examples we have considered so far relate to points and polygons, these ideas can also
be applied with spatial networks made of line segments.

For this example, we will show how to build a simple contiguity matrix, which considers two observations
as neighbors if they share one edge. In other words, for a street network as in our example, two street
segments will be connected if they “touch” each other. Since lines only have one dimension, there is no room
for the discussion between “queen” and “rook” criteria, but only one type of contiguity.

Technically speaking, building a contiguity matrix from a spatial network like the streets of London’s
Soho can be done with PySAL, but the route to creating it is slightly different. For this task, instead of
the ps.queen_from shapefile, we will use the network module of the library, which reads a line shapefile
and creates a network representation of it. Once loaded, a contiguity matrix can be easily created using the
contiguityweights attribute. To keep things aligned, we rename the IDs of the matrix to match those in
the table and, finally, we row-standardize the matrix, which is a standard ps.W object, like those we have
been working with for the polygon and point cases:

In [6]: # Load the network
ntw = ps.Network(js_path+’streets_js.shp’)
Create the spatial weights matriz
W = ntw.contiguityweights(graph=False)
Rename IDs to match those in the ‘segIdStr‘ column
w.remap_ids(js[’segIdStr’])
Row standardize the matrizc
w.transform = R’

WARNING: there is one disconnected observation (no neighbors)
Island id: [(73, 74)]
WARNING: s70-90 is an island (no neighbors)

Pro-tip: Note also how, when we create the contiguity weights, we include the argument graph=False.
This makes sure that we consider each street segment as it is represent in the shapefile, not as represented
by the internal graph.

Now, the w object we have just created comes from a line shapefile, but it is of the same type of any
other one we have created in the past. As such, we can inspect it in the same way. For example, we can
check who is a neighbor of observation s0-1:

In [7]: w[’s0-1"]
Out[7]: {u’s0-2’: 0.25, u’s0-3’: 0.25, u’s1-25’: 0.25, u’s1-27’: 0.25}

Note how, because we have row-standardize them, the weight given to each of the four neighbors is 0.25
which, all together, sum up to one.

1.1.3 Spatial lag

Once we have the data and the spatial weights matrix ready, we can start by computing the spatial lag
of the death density. Remember the spatial lag is the product of the spatial weights matrix and a given
variable and that, if W is row-standardized, the result amounts to the average value of the variable in the
neighborhood of each observation.

We can calculate the spatial lag for the variable Deaths_dens and store it directly in the main table with
the following line of code:

In [8]: js[’w_Deaths_dens’] = ps.lag_spatial(w, js[’Deaths_dens’])
Let us have a quick look at the resulting variable, as compared to the original one:

In [9]: js[[’segldStr’, ’Deaths_dens’, ’w_Deaths_dens’]].head()

Out [9]: segldStr Deaths_dens w_Deaths_dens

0 s0-1 0.000000 4.789361
1 s0-2 1.077897 0.000000
2 s0-3 0.000000 0.538948
3 s1-25 0.000000 6.026516
4 s1-27 18.079549 0.000000

The way to interpret the spatial lag (w_Deaths_dens) for say the first observation is as follow: the street
segment s0-2, which has a density of zero cholera deaths per 100 metres, is surrounded by other streets
which, on average, have 4.79 deaths per 100 metres. For the purpose of illustration, we can in fact check
this is correct by querying the spatial weights matrix to find out the neighbors of s0-2:

In [10]: w.neighbors[’s0-1"]
Out[10]: [u’s0-2’, u’s0-3’, u’sl1-25’, u’s1-27’]
And then checking their values:

In [11]: # Note that we first index the table on the index wvariable
neigh = js.set_index(’segldStr’).loc[w.neighbors[’s0-1’], ’Deaths_dens’]
neigh

Out[11]: segIdStr

s0-2 1.077897
s0-3 0.000000
s1-25 0.000000

s1-27 18.079549
Name: Deaths_dens, dtype: float64

And the average value, which we saw in the spatial lag is 4.79, can be calculated as follows:
In [12]: neigh.mean()
Out[12]: 4.7893612696592509

For some of the techniques we will be seeing below, it makes more sense to operate with the standardized
version of a variable, rather than with the raw one. Standardizing means to substract the average value and
divide by the standard deviation each observation of the column. This can be done easily with a bit of basic
algebra in Python:

In [13]: js[’Deaths_dens_std’] = (js[’Deaths_dens’] - js[’Deaths_dens’].mean()) / js[’Deaths_dens’].std

Finally, to be able to explore the spatial patterns of the standardized values, also called sometimes z
values, we need to create its spatial lag:

In [14]: js[’w_Deaths_dens_std’] = ps.lag_spatial(w, js[’Deaths_dens_std’])

1.2 Global Spatial autocorrelation

Global spatial autocorrelation relates to the overall geographical pattern present in the data. Statistics
designed to measure this trend thus characterize a map in terms of its degree of clustering and summarize
it. This summary can be visual or numerical. In this section, we will walk through an example of each of
them: the Moran Plot, and Moran’s I statistic of spatial autocorrelation.

1.2.1 Moran Plot

The moran plot is a way of visualizing a spatial dataset to explore the nature and strength of spatial
autocorrelation. It is essentially a traditional scatter plot in which the variable of interest is displayed
against its spatial lag. In order to be able to interpret values as above or below the mean, and their
quantities in terms of standard deviations, the variable of interest is usually standardized by substracting
its mean and dividing it by its standard deviation.

Technically speaking, creating a Moran Plot is very similar to creating any other scatter plot in Python,
provided we have standardized the variable and calculated its spatial lag beforehand:

In [15]: # Setup the figure and azis
f, ax = plt.subplots(l, figsize=(9, 9))
Plot wvalues
sns.regplot (x=’Deaths_dens_std’, y=’w_Deaths_dens_std’, data=js)
Add vertical and horizontal lines
plt.axvline(0, c=’k’, alpha=0.5)
plt.axhline(0, c=’k’, alpha=0.5)

Display
plt.show()
25
20 .
" . . :
15
L |
1.0
I . -

w_Deaths_dens_std

-1 [u] 1 2 3 4 5 [T
Deaths_dens_std

The figure above displays the relationship between Deaths_dens_std and its spatial lag which, because
the W that was used is row-standardized, can be interpreted as the average standardized density of cholera
deaths in the neighborhood of each observation. In order to guide the interpretation of the plot, a linear fit
is also included in the post, together with confidence intervals. This line represents the best linear fit to the
scatter plot or, in other words, what is the best way to represent the relationship between the two variables
as a straight line. Because the line comes from a regression, we can also include a measure of the uncertainty
about the fit in the form of confidence intervals (the shaded blue area around the line).

The plot displays a positive relationship between both variables. This is associated with the presence of
positive spatial autocorrelation: similar values tend to be located close to each other. This means that the
overall trend is for high values to be close to other high values, and for low values to be surrounded by other
low values. This however does not mean that this is only situation in the dataset: there can of course be
particular cases where high values are surrounded by low ones, and viceversa. But it means that, if we had
to summarize the main pattern of the data in terms of how clustered similar values are, the best way would
be to say they are positively correlated and, hence, clustered over space.

In the context of the example, this can be interpreted along the lines of: street segments in the dataset
show positive spatial autocorrelation in the density of cholera deaths. This means that street segments with
a high level of incidents per 100 metres tend to be located adjacent to other street segments also with high
number of deaths, an viceversa.

1.2.2 Moran’s 1

The Moran Plot is an excellent tool to explore the data and get a good sense of how much values are clustered
over space. However, because it is a graphical device, it is sometimes hard to condense its insights into a
more concise way. For these cases, a good approach is to come up with a statistical measure that summarizes
the figure. This is exactly what Moran’s I is meant to do.

Very much in the same way the mean summarizes a crucial element of the distribution of values in a
non-spatial setting, so does Moran’s I for a spatial dataset. Continuing the comparison, we can think of the
mean as a single numerical value summarizing a histogram or a kernel density plot. Similarly, Moran’s I
captures much of the essence of the Moran Plot. In fact, there is an even close connection between the two:
the value of Moran’s I corresponds with the slope of the linear fit overlayed on top of the Moran Plot.

In order to calculate Moran’s I in our dataset, we can call a specific function in PySAL directly:

In [16]: mi = ps.Moran(js[’Deaths_dens’], w)

Note how we do not need to use the standardized version in this context as we will not represent it
visually.

The method ps.Moran creates an object that contains much more information than the actual statistic.
If we want to retrieve the value of the statistic, we can do it this way:

In [17]: mi.I
Out[17]: 0.10902663995497329

The other bit of information we will extract from Moran’s I relates to statistical inference: how likely is
the pattern we observe in the map and Moran’s I captures in its value to be generated by an entirely random
process? If we considered the same variable but shuffled its locations randomly, would we obtain a map with
similar characteristics?

The specific details of the mechanism to calculate this are beyond the scope of the session, but it is
important to know that a small enough p-value associated with the Moran’s I of a map allows to reject the
hypothesis that the map is random. In other words, we can conclude that the map displays more spatial
pattern that we would expect if the values had been randomly allocated to a particular location.

The most reliable p-value for Moran’s I can be found in the attribute p_sim:

In [18]: mi.p_sim

Out[18]: 0.048000000000000001

That is just below 5% and, by standard terms, it would be considered statistically significant. Again, a
full statistical explanation of what that really means and what its implications are is beyond the discussion
in this notebook. But we can quickly ellaborate on its intuition. What that 0.048 (or 4.8%) means is that, if
we generated a large number of maps with the same values but randomly allocated over space, and calculated
the Moran’s I statistic for each of those maps, only 4.8% of them would display a larger (absolute) value
than the one we obtain from the real data, and the other 95.2% of the random maps would receive a smaller
(absolute) value of Moran’s I. If we remember again that the value of Moran’s I can also be interpreted as
the slope of the Moran Plot, what we have is that, in this case, the particular spatial arrangement of values
over space we observe for the density of cholera deaths is more concentrated than if we were to randomly
shuffle the death densities among the Soho streets, hence the statistical significance.

As a first step, the global autocorrelation analysis can teach us that observations do seem to be positively
correlated over space. In terms of our initial goal to find evidence for John Snow’s hypothesis that cholera
was caused by water in a single contaminated pump, this view seems to align: if cholera was contaminated
through the air, it should show a pattern over space -arguably a random one, since air is evenly spread over
space- that is much less concentrated than if this was caused by an agent (water pump) that is located at a
particular point in space.

1.3 Local Spatial autocorrelation

Moran’s I is good tool to summarize a dataset into a single value that informs about its degree of clustering.
However, it is not an appropriate measure to identify areas within the map where specific values are located.
In other words, Moran’s I can tell us values are clustered overall, but it will not inform us about where the
clusters are. For that purpose, we need to use a local measure of spatial autocorrelation. Local measures
consider each single observation in a dataset and operate on them, as oposed to on the overall data, as global
measures do. Because of that, they are not good a summarizing a map, but they allow to obtain further
insight.

In this session, we will consider Local Indicators of Spatial Association (LISAs), a local counter-part
of global measures like Moran’s I. At the core of these method is a classification of the observations in a
dataset into four groups derived from the Moran Plot: high values surrounded by high values (HH), low
values nearby other low values (LL), high values among low values (HL), and viceversa (LH). Each of these
groups are typically called “quadrants”. An illustration of where each of these groups fall into the Moran
Plot can be seen below:

In [19]: # Setup the figure and azis
f, ax = plt.subplots(l, figsize=(9, 9))
Plot walues
sns.regplot(x=’Deaths_dens_std’, y=’w_Deaths_dens_std’, data=js)
Add vertical and horizontal lines
plt.axvline(0, c=’k’, alpha=0.5)
plt.axhline(0, c=’k’, alpha=0.5)
ax.set_x1lim(-2, 7)
ax.set_ylim(-2.5, 2.5)
plt.text(S, 1.5, "HH", fontsize=25)
plt.text(3, -1.5, "HL", fontsize=25)
plt.text(-1, 1.5, "LH", fontsize=25)
plt.text(-1, -1.5, "LL", fontsize=25)
Display
plt.show()

10

http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1995.tb00338.x/abstract

LH HH

=]

w_Deaths_dens_std

LL HL

-2 -1 1] 1 2 3 4] 5] T
Deaths_dens_std

So far we have classified each observation in the dataset depending on its value and that of its neighbors.
This is only half way into identifying areas of unusual concentration of values. To know whether each of the
locations is a statistically significant cluster of a given kind, we again need to compare it with what we would
expect if the data were allocated in a completely random way. After all, by definition, every observation will
be of one kind of another, based on the comparison above. However, what we are interested in is whether
the strength with which the values are concentrated is unusually high.

This is exactly what LISAs are designed to do. As before, a more detailed description of their statistical
underpinnings is beyond the scope in this context, but we will try to shed some light into the intuition of
how they go about it. The core idea is to identify cases in which the comparison between the value of an
observation and the average of its neighbors is either more similar (HH, LL) or dissimilar (HL, LH) than we
would expect from pure chance. The mechanism to do this is similar to the one in the global Moran’s I, but
applied in this case to each observation, resulting then in as many statistics as original observations.

LISAs are widely used in many fields to identify clusters of values in space. They are a very useful tool
that can quickly return areas in which values are concentrated and provide suggestive evidence about the
processes that might be at work. For that, they have a prime place in the exploratory toolbox. Examples of
contexts where LISAs can be useful include: identification of spatial clusters of poverty in regions, detection

11

of ethnic enclaves, delineation of areas of particularly high/low activity of any phenomenon, etc.
In Python, we can calculate LISAs in a very streamlined way thanks to PySAL:

In [20]: lisa = ps.Moran_Local(js[’Deaths_dens’].values, w)

All we need to pass is the variable of interest -density of deaths in this context- and the spatial weights
that describes the neighborhood relations between the different observation that make up the dataset.

Because of their very nature, looking at the numerical result of LISAs is not always the most useful way
to exploit all the information they can provide. Remember that we are calculating a statistic for every sigle
observation in the data so, if we have many of them, it will be difficult to extract any meaningful pattern.
Instead, what is typically done is to create a map, a cluster map as it is usually called, that extracts the
significant observations (those that are highly unlikely to have come from pure chance) and plots them with
a specific color depending on their quadrant category.

All of the needed pieces are contained inside the 1lisa object we have created above. But, to make the
map making more straightforward, it is convenient to pull them out and insert them in the main data table,
js:

In [21]: # Break observations into stgnificant or not
js[’significant’] = lisa.p_sim < 0.05
Store the quadrant they belong to
js[’quadrant’] = lisa.q

Let us stop for second on these two steps. First, the significant column. Similarly as with global
Moran’s I, PySAL is automatically computing a p-value for each LISA. Because not every observation repre-
sents a statistically significant one, we want to identify those with a p-value small enough that rules out the
possibility of obtaining a similar situation from pure chance. Following a similar reasoning as with global
Moran’s I, we select 5% as the threshold for statistical significance. To identify these values, we create a
variable, significant, that contains True if the p-value of the observation is satisfies the condition, and
False otherwise. We can check this is the case:

In [22]: js[’significant’].head()

Out [22] : False

0

1 False

2 False

3 False

4 True

Name: significant, dtype: bool

And the first five p-values can be checked by:
In [23]: lisa.p_sim[:5]
Out[23]: array([0.421, 0.081, 0.269, 0.443, 0.0011)

Note how only the last one is smaller than 0.05, as the variable significant correctly identified.
Second, the quadrant each observation belongs to. This one is easier as it comes built into the lisa
object directly:

In [24]: js[’quadrant’].head()

Out [24] :

0
1
2
3
4

W www

Name: quadrant, dtype: int64

12

The correspondence between the numbers in the variable and the actual quadrants is as follows:

With these two elements, significant and quadrant, we can build a typical LISA cluster map combining
the mapping skills with what we have learned about subsetting and querying tables:

In [25]: # Setup the figure and azis

f, ax = plt.subplots(l, figsize=(9, 9))
Plot building blocks
for poly in blocks[’geometry’]:

gpd.plotting.plot_multipolygon(ax, poly, facecolor=’0.9’, linewidth=0)
Plot baseline street network
for line in js[’geometry’]:

gpd.plotting.plot_multilinestring(ax, line, color=’k’, linewidth=0.5)
Plot HH clusters
hh = js.loc[(js[’quadrant’]==1) & (js[’significant’]==True), ’geometry’]
for line in hh:

gpd.plotting.plot_multilinestring(ax, line, color=’red’, linewidth=5)
Plot LL clusters
11 = js.loc[(js[’quadrant’]==3) & (js[’significant’]==True), ’geometry’]
for line in 11:

gpd.plotting.plot_multilinestring(ax, line, color=’blue’, linewidth=5)
Plot LH clusters
1h = js.loc[(js[’quadrant’]==2) & (js[’significant’]==True), ’geometry’]
for line in 1lh:

gpd.plotting.plot_multilinestring(ax, line, color=’#83cef4’, linewidth=5)
Plot HL clusters
hl = js.loc[(js[’quadrant’]==4) & (js[’significant’]==True), ’geometry’]
for line in hl:

gpd.plotting.plot_multilinestring(ax, line, color=’#e59696°, linewidth=5)
Plot pumps
xys = np.array([(pt.x, pt.y) for pt in pumps.geometry])
ax.scatter(xys[:, 0], xys[:, 1], marker=’"’, color=’k’, s=50)
Style and draw
f.suptitle(’LISA for Cholera Deaths per 100m.’, size=30)
f.set_facecolor(’0.75°)
ax.set_axis_off ()
plt.axis(’equal’)
plt.show()

13

The map above displays the streets of the John Snow map of cholera and overlays on top of it the
obervations that have been identified by the LISA as clusters or spatial outliers. In bright red, we find those
street segments with an unusual concentration of high death density surrounded also by high death density.
This corresponds with segments that are close to the contaminated pump, which is also displayed in the
center of the map. In light red, we find the first type of spatial outliers. These are streets with high density
but surrounded by low density. Finally, in light blue we find the other type of spatial outlier: streets with
low densities surrounded by other streets with high density.

The substantive interpretation of a LISA map needs to relate its output to the original intention of the
analyst who created the map. In this case, our original idea was to find support in the data for John Snow’s
thesis that cholera deaths were caused by a source that could be traced back to a contaminated water pump.
The results seem to large support this view. First, the LISA statistic identifies a few clusters of high densities
surrounded by other high densities, discrediting the idea that cholera deaths were not concentrated in specific

14

parts of the street network. Second, the location of all of these HH clusters centers around only one pump,
which in turn is the one that ended up being contaminated.

Of course the results are not entirely clean, they almost never are with real data analysis. Not every
single street segment around the pump is identified as a cluster, while we find others that could potentially
be linked to a different pump (although when one looks at the location of all clusters the pattern is clear). At
this point it is important to remember issues in the data collection and the use of an approximation for the
underlying population. Some of that could be at work here. Also, since this is real world data, many other
factors that we are not accounting for in this analysis could also be affecting. However, it is important to note
that, despite all of those shortcomings, the analysis points into very much the same direction that John Snow
concluded more than 150 years ago. What it adds to his original assessment is the power and robustness
that comes with statistical inference and does not with visualization only. Some might have objected that,
although convincing, there was no statistical evidence behind his original map and hence it could have still
been the result of a purely random process in which water had no role in transmitting cholera. Upon the
results presented here, such view is much more difficult to sustain.

[Optional exercise]
Create a similar map as above but display only HH clusters, ignoring the spatial outliers.

1.4 Main exercise

Replicate the analysis above for the Liverpool IMD data we have been using in previous sessions. This will
require you to:

e Load up the IMD dataset for Liverpool.

e Create a simple choropleth of the imd_score variable.

Compute the spatial weights matrix for the LSOAs. Think of one criterium to build it that you think
would fit this variable (e.g. contiguity, distance-based, etc.), and apply it.

Create the standardized version of the IMD scores.

Calculate the spatial lag of the standardized scores.

Create the Moran Plot.

Calculate the value of Moran’s I as well as its significance level.

Perform a LISA analysis and generate a map of the results. What are the main patterns?

1.5 [Extension] Spatial autocorrelation interactive visualization

If you are interested in the interactive visualization used in class to demonstrate the concept of spatial
autocorrelation, you can find the online version of the notebook, executable directly from the browser and
without the need to install anything, on the following link:

http://mybinder.org/repo/darribas/int_sp_auto

Geographic Data Science’l5 - Lab 6 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

15

http://mybinder.org/repo/darribas/int_sp_auto

	Spatial autocorrelation and Exploratory Spatial Data Analysis
	Data
	Loading and exploring the data
	Spatial weights matrix
	Spatial lag

	Global Spatial autocorrelation
	Moran Plot
	Moran's I

	Local Spatial autocorrelation
	Main exercise
	[Extension] Spatial autocorrelation interactive visualization

