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1 Spatial weights

In this session we will be learning the ins and outs of one of the key pieces in spatial analysis: spatial
weights matrices. These are structured sets of numbers that formalize geographical relationships between
the observations in a dataset. Essentially, a spatial weights matrix of a given geography is a positive definite
matrix of dimensions N by N , where N is the total number of observations:
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where each cell wij contains a value that represents the degree of spatial contact or interaction between

observations i and j. A fundamental concept in this context is that of neighbor and neighborhood. By
convention, elements in the diagonal (wij) are set to zero. A neighbor of a given observation i is another
observation with which i has some degree of connection. In terms of W , i and j are thus neighbors if wij > 0.
Following this logic, the neighborhood of i will be the set of observations in the system with which it has
certain connection, or those observations with a weight greater than zero.

There are several ways to create such matrices, and many more to transform them so they contain an
accurate representation that aligns with the way we understand spatial interactions between the elements
of a system. In this session, we will introduce the most commonly used ones and will show how to compute
them with PySAL.

In [1]: %matplotlib inline

import seaborn as sns

import pandas as pd

import pysal as ps

import geopandas as gpd

import numpy as np

import matplotlib.pyplot as plt

1.1 Data

For this tutorial, we will use again the recently released 2015 Index of Multiple Deprivation (IMD) for
England and Wales. This dataset can be most easily downloaded from the CDRC data store (link) and,
since it already comes both in tabular as well as spatial data format (shapefile), it does not need merging or
joining to additional geometries.

In addition, we will be using the lookup between LSOAs and Medium Super Output Areas (MSOAs),
which can be downloaded on this link. This connects each LSOA polygon to the MSOA they belong to.
MSOAs are a coarser geographic delineation from the Office of National Statistics (ONS), within which
LSOAs are nested. That is, no LSOA boundary crosses any of an MSOA.

As usual, let us set the paths to the folders containing the files before anything so we can then focus on
data analysis exclusively (keep in mind the specific paths will probably be different for your computer):
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https://data.cdrc.ac.uk/dataset/cdrc-english-indices-of-deprivation-2015-geodata-pack-liverpool-e08000012
http://www.ons.gov.uk/ons/external-links/social-media/g-m/2011-oas-to-2011-lower-layer-super-output-areas--lsoas---middle-layer-super-output-areas--msoa--and-lads.html


In [2]: # This will be different on your computer and will depend on where

# you have downloaded the files

imd_shp = ’../../../../data/E08000012_IMD/shapefiles/E08000012.shp’

lookup_path = ’../../../../data/Output_areas_(2011)_to_lower_layer_super_output_areas_(2011)_to_middle_layer_super_output_areas_(2011)_to_local_authority_districts_(2011)_E+W_lookup/’

Let us load the IMD data first:

In [3]: # Read the file in

imd = gpd.read_file(imd_shp)

# Index it on the LSOA ID

imd = imd.set_index(’LSOA11CD’)

# Display summary

imd.info()

<class ’geopandas.geodataframe.GeoDataFrame’>

Index: 298 entries, E01006512 to E01033768

Data columns (total 12 columns):

crime 298 non-null float64

education 298 non-null float64

employment 298 non-null float64

geometry 298 non-null object

health 298 non-null float64

housing 298 non-null float64

idaci 298 non-null float64

idaopi 298 non-null float64

imd rank 298 non-null int64

imd score 298 non-null float64

income 298 non-null float64

living env 298 non-null float64

dtypes: float64(10), int64(1), object(1)

memory usage: 30.3+ KB

1.2 Building spatial weights in PySAL

1.2.1 Contiguity

Contiguity weights matrices define spatial connections through the existence of common boundaries. This
makes it directly suitable to use with polygons: if two polygons share boundaries to some degree, they
will be labeled as neighbors under these kinds of weights. Exactly how much they need to share is what
differenciates the two approaches we will learn: queen and rook.

• Queen

Under the queen criteria, two observations only need to share a vortex (a single point) of their boundaries
to be considered neighbors. Constructing a weights matrix under these principles can be done by running:

In [4]: w_queen = ps.queen_from_shapefile(imd_shp, idVariable=’LSOA11CD’)

w_queen

Out[4]: <pysal.weights.weights.W at 0x7f8851e05090>

The command above creates an object w queen of the class W. This is the format in which spatial weights
matrices are stored in PySAL. Note also how we include the attribute idVariable and pass in LSOA11CD.
This ensures that the observations are recorded using the ID codes we are used to, and also that we are
using to index the table imd. This way we can keep everything in line easily.

A W object can be queried to find out about the contiguity relations it contains. For example, if we would
like to know who is a neighbor of observation E01006690:
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In [5]: w_queen[’E01006690’]

Out[5]: {’E01006691’: 1.0,

’E01006692’: 1.0,

’E01006695’: 1.0,

’E01006697’: 1.0,

’E01006720’: 1.0,

’E01006759’: 1.0,

’E01033763’: 1.0}

This returns a Python dictionary that contains the ID codes of each neighbor as keys, and the weights
they are assigned as values. Since we are looking at a raw queen contiguity matrix, every neighbor gets a
weight of one. If we want to access the weight of a specific neighbor, E01006691 for example, we can do
recursive querying:

In [6]: w_queen[’E01006690’][’E01006691’]

Out[6]: 1.0

W objects also have a direct way to provide a list of all the neighbors or their weights for a given observation.
This is thanks to the neighbors and weights attributes:

In [7]: w_queen.neighbors[’E01006690’]

Out[7]: [’E01006720’,

’E01033763’,

’E01006691’,

’E01006692’,

’E01006695’,

’E01006697’,

’E01006759’]

In [8]: w_queen.weights[’E01006690’]

Out[8]: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Once created, W objects can provide much information about the matrix, beyond the basic attributes
one would expect. We have direct access to the number of neighbors each observation has via the attribute
cardinalities. For example, to find out how many neighbors observation E01006524 has:

In [9]: w_queen.cardinalities[’E01006524’]

Out[9]: 6

Since cardinalities is a dictionary, it is direct to convert it into a Series object:

In [10]: queen_card = pd.Series(w_queen.cardinalities)

queen_card.head()

Out[10]: E01006512 6

E01006513 9

E01006514 5

E01006515 8

E01006518 5

dtype: int64

This allows, for example, to access quick plotting, which comes in very handy to get an overview of the
size of neighborhoods in general:
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In [11]: sns.distplot(queen_card, bins=10)

Out[11]: <matplotlib.axes. subplots.AxesSubplot at 0x7f8808169ad0>

The figure above shows how most observations have around five neighbors, but there is some variation
around it. The distribution also seems to follow a symmetric form, where deviations from the average occur
both in higher and lower values almost evenly.

Some additional information about the spatial relationships contained in the matrix are also easily avail-
able from a W object. Let us tour over some of them:

In [12]: # Number of observations

w_queen.n

Out[12]: 298

In [13]: # Average number of neighbors

w_queen.mean_neighbors

Out[13]: 5.6174496644295306

In [14]: # Min number of neighbors

w_queen.min_neighbors

Out[14]: 1

In [15]: # Max number of neighbors

w_queen.max_neighbors

Out[15]: 11
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In [16]: # Islands (observations disconnected)

w_queen.islands

Out[16]: []

In [17]: # Order of IDs (first five only in this case)

w_queen.id_order[:5]

Out[17]: [’E01006512’, ’E01006513’, ’E01006514’, ’E01006515’, ’E01006518’]

Spatial weight matrices can be explored visually in other ways. For example, we can pick an observation
and visualize it in the context of its neighborhood. The following plot does exactly that by zooming into the
surroundings of LSOA E01006690 and displaying its polygon as well as those of its neighbors:

In [18]: # Setup figure

f, ax = plt.subplots(1, figsize=(9, 9))

# Plot base layer of polygons

for poly in imd[’geometry’]:

gpd.plotting.plot_multipolygon(ax, poly, facecolor=’k’, linewidth=0.1)

# Select focal polygon

focus = imd.loc[’E01006690’, ’geometry’]

# Plot focal polygon

gpd.plotting.plot_multipolygon(ax, focus, facecolor=’red’, alpha=1, linewidth=0)

# Plot neighbors

for nei in w_queen[’E01006690’]:

nei_poly = imd.loc[nei, ’geometry’]

gpd.plotting.plot_multipolygon(ax, nei_poly, facecolor=’lime’, linewidth=0)

# Title

f.suptitle("Queen neighbors of ‘E01006690‘")

# Style and display on screen

ax.set_axis_off()

plt.axis(’equal’)

ax.set_ylim(388000, 393500)

ax.set_xlim(336000, 339500)

plt.show()
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Note how the figure is built gradually, from the base map (L. 4-5), to the focal point (L. 9), to its
neighborhood (L. 11-13). Once the entire figure is plotted, we zoom into the area of interest (L. 19-20).

• Rook

Rook contiguity is similar to and, in many ways, superseded by queen contiguity. However, since it
sometimes comes up in the literature, it is useful to know about it. The main idea is the same: two
observations are neighbors if they share some of their boundary lines. However, in the rook case, it is not
enough with sharing only one point, it needs to be at least a segment of their boundary. In most applied
cases, these differences usually boil down to how the geocoding was done, but in some cases, such as when
we use raster data or grids, this approach can differ more substantively and it thus makes more sense.

From a technical point of view, constructing a rook matrix is very similar:

In [19]: w_rook = ps.rook_from_shapefile(imd_shp, idVariable=’LSOA11CD’)

w_rook
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Out[19]: <pysal.weights.weights.W at 0x7f8801cd6110>

The output is of the same type as before, a W object that can be queried and used in very much the same
way as any other one.

[Optional exercise]
Create a similar map for the rook neighbors of polygon E01006580.
How would it differ if the spatial weights were created based on the queen criterion?

1.2.2 Distance

Distance based matrices assign the weight to each pair of observations as a function of how far from each
other they are. How this is translated into an actual weight varies across types and variants, but they all
share that the ultimate reason why two observations are assigned some weight is due to the distance between
them.

• K-Nearest Neighbors

One approach to define weights is to take the distances between a given observation and the rest of the
set, rank them, and consider as neighbors the k closest ones. That is exactly what the k-nearest neighbors
(KNN) criterium does.

To calculate KNN weights, we can use a similar function as before and derive them from a shapefile:

In [20]: knn5 = ps.knnW_from_shapefile(imd_shp, k=5, idVariable=’LSOA11CD’)

knn5

Out[20]: <pysal.weights.weights.W at 0x7f8808043b90>

Note how we need to specify the number of nearest neighbors we want to consider with the argument
k. Since it is a polygon shapefile that we are passing, the function will automatically compute the centroids
to derive distances between observations. Alternatively, we can provide the points in the form of an array,
skipping this way the dependency of a file on disk:

In [21]: # Extract centroids

cents = imd.centroid

# Extract coordinates into an array

pts = np.array([(pt.x, pt.y) for pt in cents])

# Compute KNN weights

knn5_from_pts = ps.knnW_from_array(pts, k=5)

knn5_from_pts

Out[21]: <pysal.weights.weights.W at 0x7f88080e7710>

• Distance band

Another approach to build distance-based spatial weights matrices is to draw a circle of certain radious
and consider neighbor every observation that falls within the circle. The technique has two main variations:
binary and continuous. In the former one, every neighbor is given a weight of one, while in the second one,
the weights can be further tweaked by the distance to the observation of interest.

To compute binary distance matrices in PySAL, we can use the following command:

In [22]: w_dist1kmB = ps.threshold_binaryW_from_shapefile(imd_shp, 1000, idVariable=’LSOA11CD’)
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This creates a binary matrix that considers neighbors of an observation every polygon whose centroid is
closer than 1,000 metres (1Km) of the centroid of such observation. Check, for example, the neighborhood
of polygon E01006690:

In [23]: w_dist1kmB[’E01006690’]

Out[23]: {’E01006691’: 1,

’E01006692’: 1,

’E01006695’: 1,

’E01006697’: 1,

’E01006720’: 1,

’E01006725’: 1,

’E01006726’: 1,

’E01033763’: 1}

Note that the units in which you specify the distance directly depend on the CRS in which the spatial
data are projected, and this has nothing to do with the weights building but it can affect it significantly.
Recall how you can check the CRS of a GeoDataFrame:

In [24]: imd.crs

Out[24]: {u’datum’: u’OSGB36’,

u’k’: 0.9996012717,

u’lat 0’: 49,

u’lon 0’: -2,

u’no defs’: True,

u’proj’: u’tmerc’,

u’units’: u’m’,

u’x 0’: 400000,

u’y 0’: -100000}

In this case, you can see the unit is expressed in metres (m), hence we set the threshold to 1,000 for a
circle of 1km of radious.

An extension of the weights above is to introduce further detail by assigning different weights to different
neighbors within the radious circle based on how far they are from the observation of interest. For example,
we could think of assigning the inverse of the distance between observations i and j as wij . This can be
computed with the following command:

In [25]: w_dist1kmC = ps.threshold_continuousW_from_shapefile(imd_shp, 1000, idVariable=’LSOA11CD’)

In w dist1kmC, every observation within the 1km circle is assigned a weight equal to the inverse distance
between the two:

wij =
1

dij

This way, the further apart i and j are from each other, the smaller the weight wij will be.
Contrast the binary neighborhood with the continuous one for E01006690:

In [26]: w_dist1kmC[’E01006690’]

Out[26]: {’E01006691’: 0.0013201155583939742,

’E01006692’: 0.0016898105326562619,

’E01006695’: 0.0011209237936802396,

’E01006697’: 0.0014034695245779395,

’E01006720’: 0.0013390450966253398,

’E01006725’: 0.0010090443283278022,

’E01006726’: 0.0010528397241717365,

’E01033763’: 0.0012983249276301231}

8



[Optional exercise]
Explore the help for functions ps.threshold binaryW from array and

ps.threshold continuousW from array and try to use them to replicate w dist1kmB and w dist1kmC.

Following this logic of more detailed weights through distance, there is a temptation to take it further and
consider everyone else in the dataset as a neighbor whose weight will then get modulated by the distance effect
shown above. However, although conceptually correct, this approach is not always the most computationally
or practical one. Because of the nature of spatial weights matrices, particularly because of the fact their
size is N by N , they can grow substantially large. A way to cope with this problem is by making sure they
remain fairly sparse (with many zeros). Sparsity is typically ensured in the case of contiguity or KNN by
construction but, with inverse distance, it needs to be imposed as, otherwise, the matrix could be potentially
entirely dense (no zero values other than the diagonal). In practical terms, what is usually done is to impose
a distance threshold beyond which no weight is assigned and interaction is assumed to be non-existent.
Beyond being computationally feasible and scalable, results from this approach usually do not differ much
from a fully “dense” one as the additional information that is included from further observations is almost
ignored due to the small weight they receive. In this context, a commonly used threshold, although not
always best, is that which makes every observation to have at least one neighbor.

Such a threshold can be calculated as follows:

In [27]: min_thr = ps.min_threshold_dist_from_shapefile(imd_shp)

min_thr

Out[27]: 939.73728445042354

Which can then be used to calculate an inverse distance weights matrix:

In [28]: w_min_dist = ps.threshold_continuousW_from_shapefile(imd_shp, min_thr, idVariable=’LSOA11CD’)

WARNING: there is one disconnected observation (no neighbors)

Island id: [214]

NOTE The warning that it returns appears to be a precission issue caused by the point being exactly
at the threshold distance. One solution until this gets resolved is to make the threshold marginally larger:

In [29]: # Add a marginally small amount to the threshold

new_thr = min_thr + (0.000001 * min_thr)

# Compute weights matrix

w_min_dist = ps.threshold_continuousW_from_shapefile(imd_shp, new_thr, idVariable=’LSOA11CD’)

[Optional extension. Lecture figure]
Below is how to build a visualization for distance-based weights that displays the polygons, highlighting

the focus and its neighbors, and then overlays the centroids and the buffer used to decide whether a polygon
is a neighbor or not. Since this is distance-based weights, there needs to be a way to establish distance
between two polygons and, in this case, the distance between their centroids is used.

In [30]: # Setup figure

f, ax = plt.subplots(1, figsize=(9, 9))

# Plot base layer of polygons

for poly in imd[’geometry’]:

gpd.plotting.plot_multipolygon(ax, poly, facecolor=’k’, linewidth=0.1)

# Select focal polygon
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focus = imd.loc[’E01006690’, ’geometry’]

# Plot focal polygon

gpd.plotting.plot_multipolygon(ax, focus, facecolor=’red’, alpha=1, linewidth=0)

# Plot neighbors

for nei in w_dist1kmB[’E01006690’]:

nei_poly = imd.loc[nei, ’geometry’]

gpd.plotting.plot_multipolygon(ax, nei_poly, facecolor=’lime’, linewidth=0)

# Plot 1km buffer

buf = focus.centroid.buffer(1000)

gpd.plotting.plot_multipolygon(ax, buf, edgecolor=’yellow’, alpha=0)

# Plot centroids of neighbor

pts = np.array([(pt.x, pt.y) for pt in imd.centroid])

ax.plot(pts[:, 0], pts[:, 1], color=’#00d8ea’, linewidth=0, alpha=0.75, marker=’o’, markersize=4)

#imd.centroid.plot(axes=ax)

# Title

f.suptitle("Neighbors within 1km of ‘E01006690‘")

# Style, zoom and display on screen

ax.set_axis_off()

plt.axis(’equal’)

ax.set_ylim(388000, 393500)

ax.set_xlim(336000, 339500)

plt.show()
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1.2.3 Block weights

Block weights connect every observation in a dataset that belongs to the same category in a list provided
ex-ante. Usually, this list will have some relation to geography an the location of the observations but,
technically speaking, all one needs to create block weights is a list of memberships. In this class of weights,
neighboring observations, those in the same group, are assigned a weight of one, and the rest receive a weight
of zero.

In this example, we will build a spatial weights matrix that connects every LSOA with all the other ones
in the same MSOA. To do this, we first need a lookup list that connects both kinds of geographies:

In [31]: lookup = pd.read_csv(lookup_path+’OA11_LSOA11_MSOA11_LAD11_EW_LUv2.csv’)

lookup = lookup[[’LSOA11CD’, ’MSOA11CD’]].drop_duplicates(take_last=True)\
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.set_index(’LSOA11CD’)[’MSOA11CD’]

lookup.head()

/home/dani/anaconda/envs/gds/lib/python2.7/site-packages/pandas/io/parsers.py:1170: DtypeWarning: Columns (7) have mixed types. Specify dtype option on import or set low memory=False.

data = self. reader.read(nrows)

Out[31]: LSOA11CD

E01000002 E02000001

E01032740 E02000001

E01000005 E02000001

E01000009 E02000017

E01000008 E02000016

Name: MSOA11CD, dtype: object

Since the original file contains much more information than we need for this exercise, note how in line 2
we limit the columns we keep to only two, LSOA11CD and MSOA11CD. We also add an additional command,
drop duplicates, which removes elements whose index is repeated more than once, as is the case in this
dataset (every LSOA has more than one row in this table). By adding the take last argument, we make
sure that one and only one element of each index value is retained. For ease of use later on, we set the index,
that is the name of the rows, to LSOA11CD. This will allow us to perform easy lookups without having to
perform full DataFrame queries, and it is also a more computationally efficient way to select observations.

For example, if we want to know in which MSOA the polygon E01000003 is, we just need to type:

In [32]: lookup.loc[’E01000003’]

Out[32]: ’E02000001’

With the lookup in hand, let us append it to the IMD table to keep all the necessary pieces in one place
only:

In [33]: imd[’MSOA11CD’] = lookup

Now we are ready to build a block spatial weights matrix that connects as neighbors all the LSOAs in
the same MSOA. Using PySAL, this is a one-line task:

In [34]: w_block = ps.block_weights(imd[’MSOA11CD’])

In this case, PySAL does not allow to pass the argument idVariable as above. As a result, observations
are named after the the order the occupy in the list:

In [35]: w_block[0]

Out[35]: {218: 1.0, 219: 1.0, 220: 1.0, 292: 1.0}

The first element is neighbor of observations 218, 129, 220, and 292, all of them with an assigned weight
of 1. However, it is easy enough to correct this by using the additional method remap ids:

In [36]: w_block.remap_ids(imd.index)

Now if you try w bloc[0], it will return an error. But if you query for the neighbors of an observation
by its LSOA id, it will work:

In [37]: w_block[’E01006512’]

Out[37]: {u’E01006747’: 1.0, u’E01006748’: 1.0, u’E01006751’: 1.0, u’E01033763’: 1.0}

[Optional exercise]
For block weights, create a similar map to that of queen neighbors of polygon E01006690.
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1.3 Standardizing W matrices

In the context of many spatial analysis techniques, a spatial weights matrix with raw values (e.g. ones and
zeros for the binary case) is not always the best suiting one for analysis and some sort of transformation is
required. This implies modifying each weight so they conform to certain rules. PySAL has transformations
baked right into the W object, so it is easy to check the state of an object as well as to modify it.

Consider the original queen weights, for observation E01006690:

In [38]: w_queen[’E01006690’]

Out[38]: {’E01006691’: 1.0,

’E01006692’: 1.0,

’E01006695’: 1.0,

’E01006697’: 1.0,

’E01006720’: 1.0,

’E01006759’: 1.0,

’E01033763’: 1.0}

Since it is contiguity, every neighbor gets one, the rest zero weight. We can check if the object w queen

has been transformed or not by calling the argument transform:

In [39]: w_queen.transform

Out[39]: ’O’

where O stands for “original”, so no transformations have been applied yet. If we want to apply a row-
based transformation, so every row of the matrix sums up to one, we modify the transform attribute as
follows:

In [40]: w_queen.transform = ’R’

Now we can check the weights of the same observation as above and find they have been modified:

In [41]: w_queen[’E01006690’]

Out[41]: {’E01006691’: 0.14285714285714285,

’E01006692’: 0.14285714285714285,

’E01006695’: 0.14285714285714285,

’E01006697’: 0.14285714285714285,

’E01006720’: 0.14285714285714285,

’E01006759’: 0.14285714285714285,

’E01033763’: 0.14285714285714285}

Save for precission issues, the sum of weights for all the neighbors is one:

In [42]: pd.Series(w_queen[’E01006690’]).sum()

Out[42]: 0.99999999999999978

Returning the object back to its original state is as simple as assigning transform back to original:

In [43]: w_queen.transform = ’O’

In [44]: w_queen[’E01006690’]

Out[44]: {’E01006691’: 1.0,

’E01006692’: 1.0,

’E01006695’: 1.0,

’E01006697’: 1.0,

’E01006720’: 1.0,

’E01006759’: 1.0,

’E01033763’: 1.0}
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PySAL supports the following transformations:

• O: original, returning the object to the initial state.

• B: binary, with every neighbor having assigned a weight of one.

• R: row, with all the neighbors of a given observation adding up to one.

• V: variance stabilizing, with the sum of all the weights being constrained to the number of observations.

1.4 Reading and Writing spatial weights in PySAL

Sometimes, if a dataset is very detailed or large, it can be costly to build the spatial weights matrix of a
given geography and, despite the optimizations in the PySAL code, the computation time can quickly grow
out of hand. In these contexts, it is useful to not have to re-build a matrix from scratch every time we need
to re-run the analysis. A useful solution in this case is to build the matrix once, and save it to a file where
it can be reloaded at a later stage if needed.

PySAL has a common way to write any kind of W object into a file using the command open. The only
element we need to decide for ourselves beforehand is the format of the file. Although there are several
formats in which spatial weight matrices can be stored (have a look at the list of supported ones by PySAL),
we will focused on the two most commonly used ones:

• .gal files for contiguity weights

Contiguity spatial weights can be saved into a .gal file with the following commands:

In [45]: # Open file to write into

fo = ps.open(’imd_queen.gal’, ’w’)

# Write the matrix into the file

fo.write(w_queen)

# Close the file

fo.close()

The process is composed by the following three steps:

1. Open a target file for writing the matrix, hence the w argument. In this case, if a file imd queen.gal

already exists, it will be overwritten, so be careful.

2. Write the W object into the file.

3. Close the file. This is important as some additional information is written into the file at this stage,
so failing to close the file might have unintended consequences.

Once we have the file written, it is possible to read it back into memory with the following command:

In [46]: w_queen2 = ps.open(’imd_queen.gal’, ’r’).read()

w_queen2

Out[46]: <pysal.weights.weights.W at 0x7f87f9023090>

Note how we now use r instead of w because we are reading the file, and also notice how we open the file
and, in the same line, we call read() directly.

• .gwt files for distance-based weights.

A very similar process to the one above can be used to read and write distance based weights. The only
difference is specifying the right file format, .gwt in this case. So, if we want to write w dist1km into a file,
we will run:
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In [47]: # Open file

fo = ps.open(’imd_dist1km.gwt’, ’w’)

# Write matrix into the file

fo.write(w_dist1kmC)

# Close file

fo.close()

And if we want to read the file back in, all we need to do is:

In [48]: w_dist1km2 = ps.open(’imd_dist1km.gwt’, ’r’).read()

/media/dani/baul/code/pysal darribas/pysal/core/IOHandlers/gwt.py:148: RuntimeWarning: DBF relating to GWT was not found, proceeding with unordered string ids.

warn("DBF relating to GWT was not found, proceeding with unordered string ids.", RuntimeWarning)

Note how, in this case, you will probably receive a warning alerting you that there was not a DBF relating
to the file. This is because, by default, PySAL takes the order of the observations in a .gwt from a shapefile.
If this is not provided, PySAL cannot entirely determine all the elements and hence the resulting W might not
be complete (islands, for example, can be missing). To fully complete the reading of the file, we can remap
the ids as we have seen above:

In [49]: w_dist1km2.remap_ids(imd.index)

1.5 Spatial Lag

One of the most direct applications of spatial weight matrices is the so-called spatial lag. The spatial lag of
a given variable is the product of a spatial weight matrix and the variable itself:

Ysl = WY

where Y is a Nx1 vector with the values of the variable. Recall that the product of a matrix and a vector
equals the sum of a row by column element multiplication for the resulting value of a given row. In terms of
the spatial lag:

ysl−i =
∑
j

wijyj

If we are using row-standardized weights, wij becomes a proportion between zero and one, and ysl−i can
be seen as the average value of Y in the neighborhood of i.

The spatial lag is a key element of many spatial analysis techniques, as we will see later on and, as such,
it is fully supported in PySAL. To compute the spatial lag of a given variable, imd score for example:

In [50]: # Row-standardize the queen matrix

w_queen.transform = ’R’

# Compute spatial lag of ‘imd_score‘

w_queen_score = ps.lag_spatial(w_queen, imd[’imd_score’])

# Print the first five elements

w_queen_score[:5]

Out[50]: array([ 48.27833333, 34.96777778, 46.538 , 40.02375 , 63.738 ])

Line 4 contains the actual computation, which is highly optimized in PySAL. Note that, despite passing
in a pd.Series object, the output is a numpy array. This however, can be added directly to the table imd:

In [51]: imd[’w_queen_score’] = w_queen_score

[Optional exercise]
Explore the spatial lag of w queen score by constructing a density/histogram plot similar to those

created in Lab 2. Compare these with one for imd score. What differences can you tell?
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1.6 Moran Plot

The Moran Plot is a graphical way to start exploring the concept of spatial autocorrelation, and it is an easy
application of spatial weight matrices and the spatial lag. In essence, it is a simple scatter plot in which a
given variable (imd score, for example) is plotted against its own spatial lag. Usually, a fitted line is added
to include more information:

In [52]: # Setup the figure and axis

f, ax = plt.subplots(1, figsize=(9, 9))

# Plot values

sns.regplot(x="imd_score", y="w_queen_score", data=imd)

# Display

plt.show()

In order to easily compare different scatter plots and spot outlier observations, it is common practice
to standardize the values of the variable before computing its spatial lag and plotting it. This can be
accomplished by substracting the average value and dividing the result by the standard deviation:
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zi =
y − ȳ
σy

where zi is the standardized version of yi, ȳ is the average of the variable, and σ its standard deviation.
Creating a standardized Moran Plot implies that average values are centered in the plot (as they are

zero when standardized) and dispersion is expressed in standard deviations, with the rule of thumb of values
greater or smaller than two standard deviations being outliers. A standardized Moran Plot also partitions
the space into four quadrants that represent different situations:

1. High-High (HH ): values above average surrounded by values above average.

2. Low-Low (LL): values below average surrounded by values below average.

3. High-Low (HL): values above average surrounded by values below average.

4. Low-High (LH ): values below average surrounded by values above average.

These will be further explored once spatial autocorrelation has been properly introduced in subsequent
lectures.

In [53]: # Standardize the IMD scores

std_imd = (imd[’imd_score’] - imd[’imd_score’].mean()) / imd[’imd_score’].std()

# Compute the spatial lag of the standardized version and save is as a

# Series indexed as the original variable

std_w_imd = pd.Series(ps.lag_spatial(w_queen, std_imd), index=std_imd.index)

# Setup the figure and axis

f, ax = plt.subplots(1, figsize=(9, 9))

# Plot values

sns.regplot(x=std_imd, y=std_w_imd)

# Add vertical and horizontal lines

plt.axvline(0, c=’k’, alpha=0.5)

plt.axhline(0, c=’k’, alpha=0.5)

# Display

plt.show()

17



[Optional exercise]
Create a standardized Moran Plot for each of the components of the IMD:

• Crime

• Education

• Employment

• Health

• Housing

• Income

• Living environment

Bonus if you can generate all the plots with a for loop.
Bonus-II if you explore the functionality of Seaborn’s jointplot (link and link) to create a richer Moran

plot.
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