
lab 04

December 3, 2015

1 Data mapping

In this session, we will build on all we have learnt so far about loading and manipulating (spatial) data and
apply it to one of the most commonly used forms of spatial analysis: choropleths. Remember these are maps
that display the spatial distribution of a variable encoded in a color scheme, also called palette. Although
there are many ways in which you can convert the values of a variable into a specific color, we will focus in
this context only on a handful of them, in particular:

• Unique values.

• Equal interval.

• Quantiles.

• Fisher-Jenks.

In addition, we will cover how to add base maps that provide context from rasters and, in two optional
extensions, will review two more additional ways of displaying data in maps: cartograms and conditional
maps.

Before all this mapping fun, let us get the importing of libraries and data loading out of the way:

In [1]: %matplotlib inline

import seaborn as sns

import pandas as pd

import pysal as ps

import geopandas as gpd

import numpy as np

import matplotlib.pyplot as plt

1.1 Data

For this tutorial, we will use the recently released 2015 Index of Multiple Deprivation (IMD) for England
and Wales. This dataset can be most easily downloaded from the CDRC data store (link) and, since it
already comes both in tabular as well as spatial data format (shapefile), it does not need merging or joining
to additional geometries.

Although all the elements of the IMD, including the ranks and the scores themselves, are in the IMD
dataset, we will also be combining them with additional data from the Census, to explore how deprivation
is related to other socio-demographic characteristics of the area. For that we will revisit the Census Data
Pack (link) we used previously.

In order to create maps with a base layer that provides context, we will be using a raster file derived
from OS VectorMap District (Backdrop Raster) and available for download on this link.

As usual, let us set the paths to the folders containing the files before anything so we can then focus on
data analysis exclusively (keep in mind the specific paths will probably be different for your computer):

In [2]: # This will be different on your computer and will depend on where

you have downloaded the files

1

https://data.cdrc.ac.uk/dataset/cdrc-english-indices-of-deprivation-2015-geodata-pack-liverpool-e08000012
https://data.cdrc.ac.uk/dataset/cdrc-2011-census-data-packs-for-local-authority-district-liverpool-e08000012
https://www.ordnancesurvey.co.uk/business-and-government/products/vectormap-district.html
http://darribas.org/gds15/content/labs/figs/lab04_liverpool.tif

imd_shp = ’../../../../data/E08000012_IMD/shapefiles/E08000012.shp’

liv_path = ’figs/lab04_liverpool.tif’

data_path = ’../../../../data/Liverpool/’

• IMD data

Now we can load up the IMD data exactly as we did earlier for a shapefile:

In [3]: # Read the file in

imd = gpd.read_file(imd_shp)

Index it on the LSOA ID

imd = imd.set_index(’LSOA11CD’)

Display summary

imd.info()

<class ’geopandas.geodataframe.GeoDataFrame’>

Index: 298 entries, E01006512 to E01033768

Data columns (total 12 columns):

crime 298 non-null float64

education 298 non-null float64

employment 298 non-null float64

geometry 298 non-null object

health 298 non-null float64

housing 298 non-null float64

idaci 298 non-null float64

idaopi 298 non-null float64

imd rank 298 non-null int64

imd score 298 non-null float64

income 298 non-null float64

living env 298 non-null float64

dtypes: float64(10), int64(1), object(1)

memory usage: 30.3+ KB

Note how on line 4 we index the resulting table imd with the column LSOA11CD. Effectively, this means
we are “naming” the rows, the same way we the columns are named, using the column LSOA11CD, which
contains the unique ID’s of each area. This affords us some nice slicing and querying capabilities as well as
permitting to merge the table with other ones more easily.

Pay attention also to how exactly we index the table: we create a new object that is named in the same
way, imd, but that contains the result of applying the function set index to the original object imd. As
usual, there are many ways to index a table in Python, but this is one of the most direct and expressive
ones.

• Census data

In order to explore additional dimensions of deprivation, and to have categorical data to display with
“unique values” choropleths, we will use some of the Census data pack. Although most of the Census variables
are continuous, we will transform them to create categorical characteristics. Remember a categorical variable
is one that comprises only a limited number of potential values, and these are not comparable with each
other across a numerical scale. For example, religion or country of origin are categorical variables. It is not
possible to compare their different values in a quantitative way (religion A is not double or half of religion
B) but instead they represent qualitative differences.

In particular, we are going to use tables QS104EW (Gender) and KS103EW (marital status). The way these
are presented in its raw form is as tabulated counts of each of the possible categories. Our strategy to turn
these into a single categorical variable for each case is to compare the counts for each area and assign that
of the largest case. For example, in the first case, an area will be labelled as “male” if there are more males
than females living in that particular LSOA. In the case of marital status, although there are more cases,

2

we will simplify and use only “married” and “single” and assign one or the other on the bases of which ones
are more common in each particular area.

NOTE: the following code snippet involves some data transformations that are a bit more advanced
that what is covered in this course. Simply run them to load the data, but you are not expected to know
some of the coding tricks required in this cell.

In [4]: # Gender breakup

Read table (csv file)

gender = pd.read_csv(data_path+’tables/QS104EW_lsoa11.csv’, index_col=’GeographyCode’)

Rename columns from code to human-readable name

gender = gender.rename(columns={’QS104EW0002’: ’Male’, \

’QS104EW0003’: ’Female’})[[’Male’, ’Female’]]

Create male-female switcher

maj_male = gender[’Male’] > gender[’Female’]

Add "Gender_Majority" variable to table and assign the switcher

gender[’Gender_Majority’] = maj_male

Replace ‘True‘ values with "Male" and ‘False‘ with "Female"

gender.loc[gender[’Gender_Majority’]==True, ’Gender_Majority’] = ’Male’

gender.loc[gender[’Gender_Majority’]==False, ’Gender_Majority’] = ’Female’

Status breakup

Read table (csv file)

sinmar = pd.read_csv(data_path+’tables/KS103EW_lsoa11.csv’, index_col=’GeographyCode’)

Rename columns from code to human-readable name

sinmar = sinmar.rename(columns={’KS103EW0002’: ’Single’, \

’KS103EW0003’: ’Married’})[[’Single’, ’Married’]]

Create sigle-married switcher

maj_sin = sinmar[’Single’] > sinmar[’Married’]

Add "Status_Majority" variable to table and assign the switcher

sinmar[’Status_Majority’] = maj_sin

Replace ‘True‘ values with "Single" and ‘False‘ with "Married"

sinmar.loc[sinmar[’Status_Majority’]==True, ’Status_Majority’] = ’Single’

sinmar.loc[sinmar[’Status_Majority’]==False, ’Status_Majority’] = ’Married’

Join

both = imd.join(sinmar).join(gender)

Reset the CRS after join

both.crs = imd.crs

This creates the table we will be using for the rest of the session:

In [5]: both.head()

Out[5]: crime education employment \
LSOA11CD

E01006512 -0.20 10.06 0.08

E01006513 1.50 20.13 0.03

E01006514 0.74 15.50 0.15

E01006515 1.16 33.51 0.30

E01006518 0.67 49.90 0.34

geometry health housing \
LSOA11CD

E01006512 POLYGON ((336103.358 389628.58, 336103.416 389... 1.19 24.49

E01006513 POLYGON ((335173.781 389691.538, 335169.798 38... 0.58 25.15

3

E01006514 POLYGON ((335495.676 389697.267, 335495.444 38... 1.86 21.85

E01006515 POLYGON ((334953.001 389029, 334951 389035, 33... 1.90 17.40

E01006518 POLYGON ((335354.015 388601.947, 335354 388602... 2.24 15.52

idaci idaopi imd rank imd score income living env Single \
LSOA11CD

E01006512 0.16 0.31 10518 25.61 0.10 68.91 1288

E01006513 0.21 0.20 10339 25.91 0.04 85.48 2613

E01006514 0.23 0.48 5247 37.64 0.19 58.90 1583

E01006515 0.46 0.76 1019 58.99 0.43 29.78 587

E01006518 0.50 0.52 662 63.37 0.43 31.03 716

Married Status Majority Male Female Gender Majority

LSOA11CD

E01006512 287 Single 1070 810 Male

E01006513 170 Single 1461 1480 Female

E01006514 204 Single 1177 931 Male

E01006515 218 Single 595 613 Female

E01006518 363 Single 843 853 Female

A look at the variables reveals that, in effect, we have successfuly merged the IMD data with the
categorical variables derived from Census tables:

In [6]: both.info()

<class ’geopandas.geodataframe.GeoDataFrame’>

Index: 298 entries, E01006512 to E01033768

Data columns (total 18 columns):

crime 298 non-null float64

education 298 non-null float64

employment 298 non-null float64

geometry 298 non-null object

health 298 non-null float64

housing 298 non-null float64

idaci 298 non-null float64

idaopi 298 non-null float64

imd rank 298 non-null int64

imd score 298 non-null float64

income 298 non-null float64

living env 298 non-null float64

Single 298 non-null int64

Married 298 non-null int64

Status Majority 298 non-null object

Male 298 non-null int64

Female 298 non-null int64

Gender Majority 298 non-null object

dtypes: float64(10), int64(5), object(3)

memory usage: 44.2+ KB

Now we are fully ready to map!

1.2 Choropleths

1.2.1 Unique values

A choropleth for categorical variables simply assigns a different color to every potential value in the series.
The main requirement in this case is then for the color scheme to reflect the fact that different values are

4

not ordered or follow a particular scale.
In Python, thanks to geopandas, creating categorical choropleths is possible with one line of code. To

demonstrate this, we can plot the spatial distribution of LSOAs with a more female population than male
and viceversa:

In [7]: both.plot(column=’Gender_Majority’, categorical=True, legend=True)

Out[7]: <matplotlib.axes. subplots.AxesSubplot at 0x7f810b39ecd0>

Let us stop for a second in a few crucial aspects:

• Note how we are using the same approach as for basic maps, the command plot, but we now need to
add the argument column to specify which column in particular is to be represented.

• Since the variable is categorical we need to make that explicit by setting the argument categorical

to True.

• As an optional argument, we can set legend to True and the resulting figure will include a legend with
the names of all the values in the map.

• Unless we specify a different colormap, the selected one respects the categorical nature of the data by
not implying a gradient or scale but a qualitative structure.

[Optional exercise]
Create a categorical map of the marital status in Liverpool. Where are the areas with more married than

single population?

5

1.2.2 Equal interval

If, instead of categorical variables, we want to display the geographical distribution of a continuous phe-
nomenon, we need to select a way to encode each value into a color. One potential solution is applying what
is usually called “equal intervals”. The intuition of this method is to split the range of the distribution, the
difference between the minimum and maximum value, into equally large segments and to assign a different
color to each of them according to a palette that reflects the fact that values are ordered.

Using the example of the position of a LSOA in the national ranking of the IMD (imd rank), we can
calculate these segments, also called bins or buckets, using the library PySAL:

In [8]: classi = ps.Equal_Interval(imd[’imd_rank’], k=7)

classi

Out[8]: Equal Interval

Lower Upper Count

===

x[i] <= 4604.857 156

4604.857 < x[i] <= 9185.714 48

9185.714 < x[i] <= 13766.571 30

13766.571 < x[i] <= 18347.429 21

18347.429 < x[i] <= 22928.286 24

22928.286 < x[i] <= 27509.143 14

27509.143 < x[i] <= 32090.000 5

The only additional argument to pass to Equal Interval, other than the actual variable we would like
to classify is the number of segments we want to create, k, which we are arbitrarily setting to seven in this
case. This will be the number of colors that will be plotted on the map so, although having several can give
more detail, at some point the marginal value of an additional one is fairly limited, given the ability of the
brain to tell any differences.

Once we have classified the variable, we can check the actual break points where values stop being in one
class and become part of the next one:

In [9]: classi.bins

Out[9]: array([4604.85714286, 9185.71428571, 13766.57142857, 18347.42857143,

22928.28571429, 27509.14285714, 32090.])

The array of breaking points above implies that any value in the variable below 4604.9 will get the first
color in the gradient when mapped, values between 4604.9 and 9185.7 the next one, and so on.

The key characteristic in equal interval maps is that the bins are allocated based on the magnitude
on the values, irrespective of how many obervations fall into each bin as a result of it. In highly skewed
distributions, this can result in bins with a large number of observations, while others only have a handful
of outliers. This can be seen in the submmary table printed out above, where 156 LSOAs are in the first
group, but only five of them belong to the one with highest values. This can also be represented visually
with a kernel density plot where the break points are included as well:

In [10]: # Set up the figure

f, ax = plt.subplots(1)

Plot the kernel density estimation (KDE)

sns.kdeplot(imd[’imd_rank’], shade=True)

Add a blue tick for every value at the bottom of the plot (rugs)

sns.rugplot(imd[’imd_rank’], alpha=0.5)

Loop over each break point and plot a vertical red line

6

for cut in classi.bins:

plt.axvline(cut, color=’red’, linewidth=0.75)

Display image

plt.show()

Technically speaking, the figure is created by overlaying a KDE plot with vertical bars for each of the
break points. This makes much more explicit the issue highlighed by which the first bin contains a large
amount of observations while the one with top values only encompasses a handful of them.

To create a map that displays the colors assigned by the equal interval classification algorithm, we use a
similar approach as with unique values but with some key differences:

In [11]: imd.plot(column=’imd_rank’, scheme=’equal_interval’, k=7, colormap=plt.cm.Blues_r, alpha=1)

/media/dani/baul/code/geopandas darribas/geopandas/plotting.py:232: FutureWarning: ’colormap’ is deprecated, please use ’cmap’ instead (for consistency with matplotlib)

"(for consistency with matplotlib)", FutureWarning)

Out[11]: <matplotlib.axes. subplots.AxesSubplot at 0x7f80d9827d10>

7

Pay attention to the key differences:

• Instead of specifyig categorical as True, we replace it by the argument scheme, which we will
use for all choropleths that require a continuous classification scheme. In this case, we set it to
equal interval.

• As above, we set the number of colors to 7. Note that we need not pass the bins we calculated above,
the plotting method does it itself under the hood for us.

• As optional arguments, we can change the colormap to a blue gradient, which is one of the recommended
ones by ColorBrewer for a sequential palette.

• Equally optional, some of the arguments we learned with basic maps, such as the degree of transparency,
also apply in this context.

Substantively, the map also makes very explicit the fact that many areas are put into the same bin as
the amount of white polygons is very large.

[Optional exercise]
Create an equal interval kde plot and map of the actual score of the IMD (imd score).
As a bonus, try including a legend in the map, following a similar approach as in unique values maps.

8

http://colorbrewer2.org/

1.2.3 Quantiles

One solution to obtain a more balanced classification scheme is using quantiles. This, by definition, assigns
the same amount of values to each bin: the entire series is laid out in order and break points are assigned
in a way that leaves exactly the same amount of observations between each of them. This “observation-
based” approach contrasts with the “value-based” method of equal intervals and, although it can obscure
the magnitude of extreme values, it can be more informative in cases with skewed distributions.

Calculating a quantiles classification with PySAL can be done with the following line of code:

In [12]: classi = ps.Quantiles(imd[’imd_rank’], k=7)

classi

Out[12]: Quantiles

Lower Upper Count

==

x[i] <= 633.714 43

633.714 < x[i] <= 1335.714 42

1335.714 < x[i] <= 2641.000 43

2641.000 < x[i] <= 5540.143 42

5540.143 < x[i] <= 10355.857 43

10355.857 < x[i] <= 18401.143 42

18401.143 < x[i] <= 32090.000 43

And, similarly, the bins can also be inspected:

In [13]: classi.bins

Out[13]: array([633.71428571, 1335.71428571, 2641. , 5540.14285714,

10355.85714286, 18401.14285714, 32090.])

The visualization of the distribution can be generated in a similar way as well:

In [14]: # Set up the figure

f, ax = plt.subplots(1)

Plot the kernel density estimation (KDE)

sns.kdeplot(imd[’imd_rank’], shade=True)

Add a blue tick for every value at the bottom of the plot (rugs)

sns.rugplot(imd[’imd_rank’], alpha=0.5)

Loop over each break point and plot a vertical red line

for cut in classi.bins:

plt.axvline(cut, color=’red’, linewidth=0.75)

Display image

plt.show()

9

And the choropleth also follows a similar pattern, with the difference that we are now using the scheme
“quantiles”, instead of “equal interval”:

In [15]: imd.plot(column=’imd_rank’, scheme=’QUANTILES’, alpha=1, k=7, \

colormap=plt.cm.Blues_r, legend=True)

Out[15]: <matplotlib.axes. subplots.AxesSubplot at 0x7f80d14ccd90>

10

Note how, in this case, the amount of polygons in each color is by definition much more balanced
(almost equal in fact, except for rounding differences). This obscures outlier values, which get blurred by
significantly smaller values in the same group, but allows to get more detail in the “most populated” part
of the distribution, where instead of only white polygons, we can now discern more variability.

[Optional exercise]
Create a quantile kde plot and map of the actual score of the IMD (imd score).
As a bonus, make a map with 50% of transparency and no boundary lines.

1.2.4 Fisher-Jenks

Equal interval and quantiles are only two examples of very many classification schemes to encode values into
colors. Although not all of them are integrated into geopandas, PySAL includes several other classification
schemes (for a detailed list, have a look at this link). As an example of a more sophisticated one, let us
create a Fisher-Jenks choropleth:

In [16]: classi = ps.Fisher_Jenks(imd[’imd_rank’], k=7)

classi

11

http://pysal.readthedocs.org/en/latest/library/esda/mapclassify.html

Out[16]: Fisher Jenks

Lower Upper Count

===

x[i] <= 2930.000 133

2930.000 < x[i] <= 6946.000 52

6946.000 < x[i] <= 11656.000 39

11656.000 < x[i] <= 16185.000 24

16185.000 < x[i] <= 20719.000 20

20719.000 < x[i] <= 24098.000 18

24098.000 < x[i] <= 32090.000 12

This methodology aims at minimizing the variance within each bin while maximizing that between dif-
ferent classes.

In [17]: classi.bins

Out[17]: array([2930., 6946., 11656., 16185., 20719., 24098., 32090.])

Graphically, we can see how the break points are not equally spaced but are adapting to obtain an optimal
grouping of observations:

In [18]: imd.plot(column=’imd_rank’, scheme=’QUANTILES’, alpha=1, k=7, colormap=plt.cm.Blues_r)

Out[18]: <matplotlib.axes. subplots.AxesSubplot at 0x7f80d0922a90>

12

In [19]: # Set up the figure

f, ax = plt.subplots(1)

Plot the kernel density estimation (KDE)

sns.kdeplot(imd[’imd_rank’], shade=True)

Add a blue tick for every value at the bottom of the plot (rugs)

sns.rugplot(imd[’imd_rank’], alpha=0.5)

Loop over each break point and plot a vertical red line

for cut in classi.bins:

plt.axvline(cut, color=’red’, linewidth=0.75)

Display image

plt.show()

Technically, however, the way to create a Fisher-Jenks map is exactly the same as before:

In [20]: imd.plot(column=’imd_rank’, scheme=’fisher_jenks’, alpha=1, k=7, colormap=plt.cm.Blues_r)

Out[20]: <matplotlib.axes. subplots.AxesSubplot at 0x7f80cb77cd90>

13

1.3 Raster basemaps

This section requires the additional library rasterio:

In [21]: import rasterio

Since choropleths tend to be based on administrative boundaries which do not necessarily reflect correctly
the topography of a region, it may be of interest to provide a choropleth with certain geographical context.
If data are available, an easy way to deliver this is by plotting a base raster map underneath the choropleth
and allowing some transparency on the upper layer.

To do this in Python, we can combine the plotting of a raster image with the generation of a choropleth
as we have seen above. First, we need to read the raster in:

In [22]: # Open the raster file

src = rasterio.open(liv_path)

Extract the bounds

left, bottom, right, top = src.bounds

At this point we are ready to generate the figure with both layers:

In [23]: %%time

Set up the figure

f, ax = plt.subplots(1, figsize=(12, 12))

14

Add raster layer

ax.imshow(src.read(1), cmap=’gray’, extent=(left, right, bottom, top))

Create the choropleth

imd.plot(column=’imd_score’, colormap=’Blues’, linewidth=0.1, axes=ax)

Style the labels for the ticks

locs, labels = plt.xticks()

plt.setp(labels, rotation=90)

Keep axes proportionate

plt.axis(’equal’)

CPU times: user 4.24 s, sys: 504 ms, total: 4.75 s

Wall time: 4.88 s

/media/dani/baul/code/geopandas darribas/geopandas/plotting.py:236: FutureWarning: ’axes’ is deprecated, please use ’ax’ instead (for consistency with pandas)

"(for consistency with pandas)", FutureWarning)

15

Note how the way the raster is added to the axis is different that the way we attach a vector map: the
raster gets plotted through imshow (image show), which is a function embedded in the axis object (ax),
while the vector object is appended by passing the axis (ax) through the plotting method itself.

1.4 Zooming into the map

A general map of an entire region, or urban area, can sometimes obscure particularly local patterns because
they happen at a much smaller scale that cannot be perceived in the global view. One way to solve this is
by providing a focus of a smaller part of the map in a separate figure. Although there are many ways to do
this in Python, the most straightforward one is to reset the limits of the axes to center them in the area of
interest.

As an example, let us consider the quantile map produced above:

In [24]: imd.plot(column=’imd_rank’, scheme=’QUANTILES’, alpha=1, k=7, colormap=plt.cm.Blues_r)

Out[24]: <matplotlib.axes. subplots.AxesSubplot at 0x7f80c9ab8cd0>

If we want to focus on the city centre, say the area of the map more or less between coordinates 387,000
and 391,000 on the vertical axis, and 332,000 and 337,000 on the horizontal one, creating the figure involves
the following:

In [25]: # Setup the figure

f, ax = plt.subplots(1)

Draw the choropleth

16

imd.plot(column=’imd_rank’, scheme=’QUANTILES’, alpha=1, k=7, \

colormap=plt.cm.Blues_r, axes=ax)

[Optional] Keep axes proportionate

plt.axis(’equal’)

Redimensionate X and Y axes to desired bounds

ax.set_ylim(387000, 391000)

ax.set_xlim(332000, 337000)

Show image

plt.show()

Note how, if we decide to keep the axes proportionate, it needs to be done before resetting the limits, as
otherwise the change will not have an effect.

1.5 [Extension 1] Cartograms

Cartograms are maps that represent the spatial distribution of a variable not by encoding it in a color
palette by rather by modifying geographical objects. There are many algorithms to distort the shapes of
geographical entities according to values, some of them incredibly complicated and complex.

As an example of how to create a relatively straight-forward cartogram, we will convert polygons into
points by using their centroids, and will define the size of the dot proportionally to the value of the variable
we want to display, the IMD score in this case. We will adopt a different approach to plot points than we
have done so far. This involves first extracting the coordinates of the points:

In [26]: pts = np.array([(pt.x, pt.y) for pt in imd.centroid])

NOTE: The line of code above contains some elements that reflect more advanced Python programming
that we have covered so far, so you should feel free to simply run it to extract the points.

17

If you are interested in the logic however, it uses a technique called “list comprehension”, which can
compress and entire for loop into a single line of code, producing more elegant and, to the trained eye, more
readable code. Essentially, the line above can be unpacked into the following loop:

In [27]: pts = []

for pt in imd.centroid:

pts.append((pt.x, pt.y))

pts = np.array(pts)

Once we have extracted them, we can display them through the command plt.scatter. This is equiv-
alent to the straightforward plot, or to loop over each point, with the difference that it will allow us to
modify the size of the dots according to a variable:

In [28]: # Plot the dots, using ‘imd_score‘ as a variable to modify

the size of each dot

plt.scatter(pts[:, 0], pts[:, 1], s=imd[’imd_score’].values)

Keep axes proportionate

plt.axis("equal")

Display

plt.show()

The command plt.scatter can also take some of the optional arguments we have learned before, such
as color. Have a look at the help of the command (link) and try modifying some of them to explore changes
in the resulting plot.

18

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter

1.6 [Extension 2 - Advanced] Conditional maps

Conditional maps are an attempt to explore multivariate relationships within a choropleth mapping context.
In essence, they are figures composed by several choropleths in which the layout of each of them provides
information about the subset of the original dataset represented. The idea is that a dataset can be subset
based on one or two conditional variables, usually categorical, and only the observations that meet each
characteristic are displayed in a given submap. Since they are combinations of choropleths, they build on
everything we have learned about their creation. As an example, let us create a conditional map of IMD
scores based on the dominating gender and marital status of each area.

From a Python perspective, creating conditional maps is a bit more intricate than simple choropleths
because of the conditioning of the data and the arranging of the layout that needs to occur for the final
figure to be produced. To be able to use the facetting machinery available in seaborn, we need to define a
function that generates a choropleth with a given subset of the dataset:

In [29]: def map_subset(vals, db, color=None, norm=True):

’’’

Internal function to pass to ‘FaceGrid‘ to build a single map

...

Arguments

vals : Series

Values of the subplot to be mapped

db : GeoDataFrame

Table with geometries

color : None

’’’

ax = plt.gca()

for poly in db[’geometry’]:

gpd.plotting.plot_multipolygon(ax, poly, facecolor=’grey’, linewidth=0.)

vari = vals.name

if norm:

db.reindex(vals.index).plot(column=vari, axes=ax, colormap=’Blues’, linewidth=0., \

vmin=db[vari].min(), vmax=db[vari].max())

else:

db.reindex(vals.index).plot(column=vari, axes=ax, colormap=’Blues’, linewidth=0.)

ax.set_axis_off()

plt.axis(’equal’)

With this function in hand, we can use it to pass it on to the facetting functionality in seaborn, which
then takes care of the actual subsetting of the data and proper alignment of the output figures:

In [30]: %%time

g = sns.FacetGrid(both, row="Gender_Majority", col="Status_Majority", \

margin_titles=True, size=5)

g.map(map_subset, "imd_score", db=both)

plt.tight_layout()

plt.show()

19

CPU times: user 10.1 s, sys: 1.6 s, total: 11.7 s

Wall time: 9.95 s

The figure contains a few interesting elements:

• The distribution of areas with different characteristics is not random over space but rather follows a
specific pattern. For example, the majority of married/female areas are located in the periphery of the
city, while most of the single/male LSOAs can be found in the city centre.

• Since the color scale is common across maps, we can compare the degree of deprivation for different
combinations. For example, areas with a more married population display consistently lower levels of
deprivation than those where singles prevail.

Although conditional maps are a powerful tool to explore a dataset and generate hypotheses about
multivariate relationships, it is important to keep in mind these can only be suggestive. A more formal
analysis, such as one based on regression, would be required to establish more robust conclusions, as several
confounding factors can be at play.

20

1.7 [Extension 3 - Advanced] MAUP

Although arguably a bit more advanced, if you are curious how the maps that exemplify the Modifiable
Areal Unit Problem (MAUP) in the lecture slides, you can find a notebook illustrating it on this link:

https://gist.github.com/darribas/8b5a7b93d4085223f1c5#file-maup-ipynb

1.8 [Extension 4] Maps from lecture slides

• Unique values

In [31]: f, ax = plt.subplots(1, figsize=(9, 9))

both.plot(column=’Status_Majority’, categorical=True, legend=True, axes=ax, \

linewidth=0.1, colormap=’Set3’)

ax.set_title(’Status Majority’)

plt.axis(’equal’)

#plt.savefig(’../lectures/figs/l04_unique_values.png’)

plt.show()

21

https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
https://gist.github.com/darribas/8b5a7b93d4085223f1c5#file-maup-ipynb

• Choropleth classifiers

In [32]: def plot_scheme(scheme, var, db, figsize=(16, 8), saveto=None):

’’’

Plot the distribution over value and geographical space of variable ‘var‘ using scheme ‘scheme

...

Arguments

scheme : str

Name of the classification scheme to use

var : str

Variable name

db : GeoDataFrame

Table with input data

figsize : Tuple

[Optional. Default = (16, 8)] Size of the figure to be created.

saveto : None/str

[Optional. Default = None] Path for file to save the plot.

’’’

from pysal.esda.mapclassify import Quantiles, Equal_Interval, Fisher_Jenks

schemes = {’equal_interval’: Equal_Interval, \

’quantiles’: Quantiles, \

’fisher_jenks’: Fisher_Jenks}

classi = schemes[scheme](db[var], k=7)

f, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)

KDE

sns.kdeplot(db[var], shade=True, ax=ax1)

sns.rugplot(db[var], alpha=0.5, ax=ax1)

for cut in classi.bins:

ax1.axvline(cut, color=’red’, linewidth=0.75)

ax1.set_title(’Value distribution’)

Map

p = db.plot(column=var, scheme=scheme, alpha=0.75, k=7, \

colormap=plt.cm.Blues_r, axes=ax2, linewidth=0.1)

ax2.axis(’equal’)

ax2.set_axis_off()

ax2.set_title(’Geographical distribution’)

f.suptitle(scheme, size=25)

if saveto:

plt.savefig(saveto)

plt.show()

In [33]: plot_scheme(’equal_interval’, ’imd_rank’, imd)

22

• Conditional map

In [34]: plot_scheme(’quantiles’, ’imd_rank’, imd)

Geographic Data Science’15 - Lab 4 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

23

	Data mapping
	Data
	Choropleths
	Unique values
	Equal interval
	Quantiles
	Fisher-Jenks

	Raster basemaps
	Zooming into the map
	[Extension 1] Cartograms
	[Extension 2 - Advanced] Conditional maps
	[Extension 3 - Advanced] MAUP
	[Extension 4] Maps from lecture slides

