
lab 02

October 8, 2015

1 Geographic Data Science - Lab 02

Dani Arribas-Bel

2 Data “munging”

Real world datasets are messy. There is no way around it: datasets have “holes” (missing data), the amount of
formats in which data can be stored is endless, and the best structure to share data is not always the optimum
to analyze them, hence the need to munge them. As has been correctly pointed out in many outlets (e.g.),
much of the time spent in what is called (Geo-)Data Science is related not only to sophisticated modeling
and insight, but has to do with much more basic and less exotic tasks such as obtaining data, processing,and
turning them into a shape and form that makes analysis possible.

For how labor intensive and relevant this aspect is, there is surprisingly very little published on patterns,
techniques, and best practices for quick and efficient data cleaning, manipulation, and transformation. In
this session, you will use a few real world datasets and learn how to process them into Python so they can be
transformed and manipulated, if necessary, and analyzed. For this, we will introduce some of the bread and
butter of data analysis and scientific computing in Python. These are fundamental tools that are constantly
used in almost any task relating to data analysis.

The first part shows how to quickly get data in and out of Python, so you can work on it and export it
when ready; then the main part of the session discusses several patterns to clean and structure data properly,
including tidying, subsetting, and aggregating; and we finish with some basic visualization. An additional
extension presents more advanced tricks to manipulate tabular data.

Before we get our hands data-dirty, let us import all the additional libraries we will need, so we can get
that out of the way and focus on the task at hand:

In [1]: # This ensures visualizations are plotted inside the notebook

%matplotlib inline

import os # This provides several system utilities

import pandas as pd # This is the workhorse of data munging in Python

import seaborn as sns # This allows us to easily and beautifully plot

2.0.1 The Liverpool Census Data Pack

Throughout this notebook (and later on as well), we will use the CDRC’s Census Data Pack for the city
of Liverpool (link) and explore some of the city’s socio-demogaphic characteristics. This is a large package
crafted by the CDRC that brings together several Census tables in a consistent way for the city of Liverpool.
We will only be able to use just a few of them but, since they are consistently organized, the procedure used
should teach you how to explore other variables on your own. In particular, in this session, we will be using
a table that lists population by country of birth.

The pack is composed of two types of data: tabular and spatial. Tabular data are numerical tables
that contain information relating to many socio-economic variables for different units (areas); spatial data
contains the geometries of the areas in which Liverpool is divided into. Since there are many variables

1

http://darribas.org
http://dictionary.reference.com/browse/munge
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0
https://twitter.com/BigDataBorat/status/306596352991830016
http://cdrc.ac.uk/
https://data.cdrc.ac.uk/dataset/cdrc-2011-census-data-packs-for-local-authority-district-liverpool-e08000012

contained in several tables, that can be linked to more than one geography, the pack also includes two
“compass files” that help you find what you are looking for: one table that lists and describes the different
datasets available; and a much more detailed table that lists and describes each and every single variable
available in the pack.

The remainder assumes you have downloaded and unpacked the data. Specify the path to the folder in
the following cell, so you can correctly run the code without errors:

In [2]: # Important! You need to specify the path to the data in *your* machine

If you have placed the data folder in the same directory as this notebook,

you would do:

path = ’Liverpool/’

path = ’../../../../data/Liverpool/’

2.0.2 Reading data (data I/O)

It is not only that data are not ready to analyze when you get a hold on them. Sometimes, there is not such
thing as the dataset to analyze. Instead, what you have is a collection of separated files, sometimes with
different structures, that you need to bring together to begin with. This is one of the areas where a bit of
scripting skills can help you a long way. While in a traditional point-and-click program like Microsoft Excel
or SPSS, you would have to repeat the steps every time you wanted to incorporate a new dataset, with a
bit of Python ninja tricks, you can write code that will do it for you as many times as you need.

We will begin jumping straight into the analysis of population in Liverpool, organized by country of birth,
at the Local Super Output Area (LSOA) level. Because the Census Data Pack contains a lot of data and
very many different tables, you will have to bear with us and trust that what we are extracting is exactly the
data of interest. This will speed up the process to walk through the reading, processing and manipulating of
a dataset. Once you are familiar with these skills, the final section goes into how to explore the entire pack
with more detail.

To read a “comma separated values” (.csv) file, we can run:

In [3]: lsoa_orig = pd.read_csv(path+’tables/QS203EW_lsoa11.csv’, index_col=’GeographyCode’)

lsoa_orig.head()

Out[3]: QS203EW0001 QS203EW0002 QS203EW0003 QS203EW0004 \
GeographyCode

E01006512 1880 910 766 699

E01006513 2941 2225 2033 1806

E01006514 2108 1786 1632 1503

E01006515 1208 974 910 877

E01006518 1696 1531 1468 1446

QS203EW0005 QS203EW0006 QS203EW0007 QS203EW0008 \
GeographyCode

E01006512 26 21 20 0

E01006513 98 28 101 0

E01006514 44 18 67 0

E01006515 16 5 12 0

E01006518 7 6 9 0

QS203EW0009 QS203EW0010 ... QS203EW0069 \
GeographyCode ...

E01006512 0 0 ... 5

E01006513 0 0 ... 5

E01006514 0 0 ... 19

E01006515 0 0 ... 4

E01006518 0 0 ... 3

2

QS203EW0070 QS203EW0071 QS203EW0072 QS203EW0073 \
GeographyCode

E01006512 0 5 0 0

E01006513 1 4 7 0

E01006514 2 17 5 0

E01006515 2 2 2 0

E01006518 0 3 4 0

QS203EW0074 QS203EW0075 QS203EW0076 QS203EW0077 QS203EW0078

GeographyCode

E01006512 0 0 0 0 0

E01006513 7 6 1 0 0

E01006514 4 2 2 1 0

E01006515 2 2 0 0 0

E01006518 4 4 0 0 0

[5 rows x 78 columns]

Let us stop for a minute to learn how we have read the file. Here are the main aspects to keep in mind:

• We are using the method read csv from the pandas library, which we have imported with the alias
pd.

• In this simple form, all that is required is to pass the path to the file we want to read, which in this
case we have created by concatenating two strings. We can see the full path we have used:

In [4]: # Yours might look different if ‘path‘ is pointing somewhere else

path + ’tables/QS203EW_lsoa11.csv’

Out[4]: ’../../../../data/Liverpool/tables/QS203EW lsoa11.csv’

• The argument index col is not strictly necessary but allows us to choose one of the columns as the
index of the table. More on indices below.

• We are using read csv because the file we want to read is in the csv format. However, pandas allows
for many more formats to be read (and written, just replace read by to! For example, read csv reads
in, to csv writes out). A full list of formats supported includes:

In [5]: # This bit of code includes some more advanced tricks, not required for this session :-)

[i for i in dir(pd) if ’read_’ in i]

Out[5]: [’read clipboard’,

’read csv’,

’read excel’,

’read fwf’,

’read gbq’,

’read hdf’,

’read html’,

’read json’,

’read msgpack’,

’read pickle’,

’read sql’,

’read sql query’,

’read sql table’,

’read stata’,

’read table’]

3

If you want to learn how to use any of them, remember how to use the help or ? systems for inline help.

• Finally, the read file is assigned into an object we call codebook, so we can manipulate it later.

Before we continue with the data, let us have a look at the object codebook. It is a different “animal”
than we have seen so far:

In [6]: type(lsoa_orig)

Out[6]: pandas.core.frame.DataFrame

It is a “pandas data frame”. Similar to R’s “data.frame” class, it is one of the most essential data
structures in Python for data analysis, and we will use it intensively. Data frames are sophisticated costructs
that can perform several advanced tasks and have many properties. We will be discovering them as we
progress on the course but, for now, let us keep in mind they are tables, indexed on rows and columns that
can support mixed data types and can be flexibly manipulated.

Now we have read the file, we can inspect it. For example, to show the first lines of the table:

In [7]: lsoa_orig.head()

Out[7]: QS203EW0001 QS203EW0002 QS203EW0003 QS203EW0004 \
GeographyCode

E01006512 1880 910 766 699

E01006513 2941 2225 2033 1806

E01006514 2108 1786 1632 1503

E01006515 1208 974 910 877

E01006518 1696 1531 1468 1446

QS203EW0005 QS203EW0006 QS203EW0007 QS203EW0008 \
GeographyCode

E01006512 26 21 20 0

E01006513 98 28 101 0

E01006514 44 18 67 0

E01006515 16 5 12 0

E01006518 7 6 9 0

QS203EW0009 QS203EW0010 ... QS203EW0069 \
GeographyCode ...

E01006512 0 0 ... 5

E01006513 0 0 ... 5

E01006514 0 0 ... 19

E01006515 0 0 ... 4

E01006518 0 0 ... 3

QS203EW0070 QS203EW0071 QS203EW0072 QS203EW0073 \
GeographyCode

E01006512 0 5 0 0

E01006513 1 4 7 0

E01006514 2 17 5 0

E01006515 2 2 2 0

E01006518 0 3 4 0

QS203EW0074 QS203EW0075 QS203EW0076 QS203EW0077 QS203EW0078

GeographyCode

E01006512 0 0 0 0 0

E01006513 7 6 1 0 0

4

E01006514 4 2 2 1 0

E01006515 2 2 0 0 0

E01006518 4 4 0 0 0

[5 rows x 78 columns]

Let us also quickly check the dimensions of the table:

In [8]: lsoa_orig.shape

Out[8]: (298, 78)

This implies 298 rows by 78 columns. That is a lot of columns, all named under obscure codes. For now,
just trust that the columns we want are:

In [9]: region_codes = [’QS203EW0002’, ’QS203EW0032’, ’QS203EW0045’, \

’QS203EW0063’, ’QS203EW0072’]

To keep only those with us, we can slice the table using the loc operator:

In [10]: lsoa_orig_sub = lsoa_orig.loc[:, region_codes]

lsoa_orig_sub.head()

Out[10]: QS203EW0002 QS203EW0032 QS203EW0045 QS203EW0063 QS203EW0072

GeographyCode

E01006512 910 106 840 24 0

E01006513 2225 61 595 53 7

E01006514 1786 63 193 61 5

E01006515 974 29 185 18 2

E01006518 1531 69 73 19 4

Note how we use the operator loc (for locator) on the dataframe, followed by squared brackets and,
inside it, two alternatives:

• We can use : to keep all the elements (rows in this case).
• And we can use a list of strings (or simply one would work too) with the names what we want to select.

We can further inspect the dataset with an additional command called info, that lists the names of the
columns and how many non-null elements each contains:

In [11]: lsoa_orig_sub.info()

<class ’pandas.core.frame.DataFrame’>

Index: 298 entries, E01006512 to E01033768

Data columns (total 5 columns):

QS203EW0002 298 non-null int64

QS203EW0032 298 non-null int64

QS203EW0045 298 non-null int64

QS203EW0063 298 non-null int64

QS203EW0072 298 non-null int64

dtypes: int64(5)

memory usage: 14.0+ KB

5

[Renaming columns]
IMPORTANT: some of the elemnts in this part are more advanced hence optional. If you want to move

quickly through the lab, simply run the code cells without paying much attention to what it does. Once you
have become more familiar with the rest of the tutorial, return here and work through the logic.

The table we have compiled contains exactly what we wanted. However, the names of the columns are a
bit unintuitive, to say the least. It would be much handier if we could rename the columns into something
more human readable. The easiest way to do that in pandas is by creating a dictionary that maps the
original name into the desired one, and then applying it to the DataFrame with the command rename. Let
us walk through the steps necessary, one by one:

• Create a dictionary that maps the codes to the names. For this, we can use the list we have created
before (region variables), and what we have learnt about querying tables, combined with a small
for loop.

First we need to bring up the variable names into a separate table (see the final section for more detail):

In [12]: variables = pd.read_csv(path+’variables_description.csv’, index_col=0)

In [13]: code2name = {}

lookup_table = variables.set_index(’ColumnVariableCode’) # Reindex to be able to query

for code in region_codes:

code2name[code] = lookup_table.loc[code, ’ColumnVariableDescription’]

code2name

Out[13]: {’QS203EW0002’: ’Europe: Total’,

’QS203EW0032’: ’Africa: Total’,

’QS203EW0045’: ’Middle East and Asia: Total’,

’QS203EW0063’: ’The Americas and the Caribbean: Total’,

’QS203EW0072’: ’Antarctica and Oceania: Total’}

• Because we know that each of these variables are totals for each group, we can further declutter the
names by removing the piece of the string ": Total". A simple loop can help us:

In [14]: for code in code2name:

code2name[code] = code2name[code].replace(’: Total’, ’’)

code2name

Out[14]: {’QS203EW0002’: ’Europe’,

’QS203EW0032’: ’Africa’,

’QS203EW0045’: ’Middle East and Asia’,

’QS203EW0063’: ’The Americas and the Caribbean’,

’QS203EW0072’: ’Antarctica and Oceania’}

• With the dictionary in hand, renaming the columns is as easy as:

In [15]: lsoa_orig_sub = lsoa_orig_sub.rename(columns=code2name)

lsoa_orig_sub.head()

Out[15]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

6

The Americas and the Caribbean Antarctica and Oceania

GeographyCode

E01006512 24 0

E01006513 53 7

E01006514 61 5

E01006515 18 2

E01006518 19 4

[Optional exercise. Difficulty: 2/5]
Take the subset table just created (lsoa orig sub) and write it into a csv file.

2.0.3 Data, sliced and diced

Now we are ready to start playing and interrogating the dataset! What we have at our fingertips is a table
that summarizes, for each of the 238 LSOAs in Liverpool, how many people live in each, by the region of
the world where they were born. To make what follows easier on your typing, let us rename the table to
something shorter:

In [16]: db = lsoa_orig_sub

Now, let us learn a few cool tricks built into pandas that work out-of-the box with a table like ours.

• Inspecting what it looks like. We can check the top (bottom) X lines of the table by passing X to the
method head (tail). For example, for the top/bottom five lines:

In [17]: db.head(5)

Out[17]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania

GeographyCode

E01006512 24 0

E01006513 53 7

E01006514 61 5

E01006515 18 2

E01006518 19 4

In [18]: db.tail(5)

Out[18]: Europe Africa Middle East and Asia \
GeographyCode

E01033764 2106 32 49

E01033765 1277 21 33

E01033766 1028 12 20

E01033767 1003 29 29

E01033768 1016 69 111

7

The Americas and the Caribbean Antarctica and Oceania

GeographyCode

E01033764 15 0

E01033765 17 3

E01033766 8 7

E01033767 5 1

E01033768 21 6

• Getting an overview of the table:

In [19]: db.info()

<class ’pandas.core.frame.DataFrame’>

Index: 298 entries, E01006512 to E01033768

Data columns (total 5 columns):

Europe 298 non-null int64

Africa 298 non-null int64

Middle East and Asia 298 non-null int64

The Americas and the Caribbean 298 non-null int64

Antarctica and Oceania 298 non-null int64

dtypes: int64(5)

memory usage: 14.0+ KB

• Getting an overview of the values of the table:

In [20]: db.describe()

Out[20]: Europe Africa Middle East and Asia \
count 298.00000 298.000000 298.000000

mean 1462.38255 29.818792 62.909396

std 248.67329 51.606065 102.519614

min 731.00000 0.000000 1.000000

25% 1331.25000 7.000000 16.000000

50% 1446.00000 14.000000 33.500000

75% 1579.75000 30.000000 62.750000

max 2551.00000 484.000000 840.000000

The Americas and the Caribbean Antarctica and Oceania

count 298.000000 298.000000

mean 8.087248 1.949664

std 9.397638 2.168216

min 0.000000 0.000000

25% 2.000000 0.000000

50% 5.000000 1.000000

75% 10.000000 3.000000

max 61.000000 11.000000

Note how the output is also a DataFrame object, so you can do with it the same things you would with
the original table (e.g. writing it to a file).

In this case, the summary might be better presented if the table is “transposed”:

In [21]: db.describe().T

Out[21]: count mean std min 25% \
Europe 298 1462.382550 248.673290 731 1331.25

Africa 298 29.818792 51.606065 0 7.00

8

Middle East and Asia 298 62.909396 102.519614 1 16.00

The Americas and the Caribbean 298 8.087248 9.397638 0 2.00

Antarctica and Oceania 298 1.949664 2.168216 0 0.00

50% 75% max

Europe 1446.0 1579.75 2551

Africa 14.0 30.00 484

Middle East and Asia 33.5 62.75 840

The Americas and the Caribbean 5.0 10.00 61

Antarctica and Oceania 1.0 3.00 11

• Equally, common descriptive statistics are also available:

In [22]: db.min()

Out[22]: Europe 731

Africa 0

Middle East and Asia 1

The Americas and the Caribbean 0

Antarctica and Oceania 0

dtype: int64

In [23]: db[’Europe’].max()

Out[23]: 2551

Note here how we have restricted the calculation of the maximum value to one column only.
Similarly, we can restrict the calculations to a single row:

In [24]: db.loc[’E01006512’, :].std()

Out[24]: 457.88426485303029

• Simple creation of new variables: we can generate new variables by applying operations on existing
ones. For example, we can calculate the total population by area. Here is a couple of ways to do it:

In [25]: # Longer, hardcoded

total = db[’Europe’] + db[’Africa’] + db[’Middle East and Asia’] + \

db[’The Americas and the Caribbean’] + db[’Antarctica and Oceania’]

total.head()

Out[25]: GeographyCode

E01006512 1880

E01006513 2941

E01006514 2108

E01006515 1208

E01006518 1696

dtype: int64

In [26]: # One shot

total = db.sum(axis=1)

total.head()

Out[26]: GeographyCode

E01006512 1880

E01006513 2941

E01006514 2108

E01006515 1208

E01006518 1696

dtype: int64

9

Note how we are using the command sum, just like we did with max or min before but, in this case, we
are not applying it over columns (e.g. the max of each column), but over rows, so we get the total sum of
populations by areas.

Once we have created the variable, we can make it part of the table:

In [27]: db[’Total’] = total

db.head()

Out[27]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01006512 24 0 1880

E01006513 53 7 2941

E01006514 61 5 2108

E01006515 18 2 1208

E01006518 19 4 1696

[Optional exercise. Difficulty: 3/5]
Obtain the total population in Liverpool by each subgroup.
Tip: focus on the axis argument.

• Assigning new values: we can easily generate new variables with scalars, and modify those.

In [28]: # New variable with all ones

db[’ones’] = 1

db.head()

Out[28]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total \
GeographyCode

E01006512 24 0 1880

E01006513 53 7 2941

E01006514 61 5 2108

E01006515 18 2 1208

E01006518 19 4 1696

ones

GeographyCode

10

E01006512 1

E01006513 1

E01006514 1

E01006515 1

E01006518 1

And we can modify specific values too:

In [29]: db.loc[’E01006512’, ’ones’] = 3

db.head()

Out[29]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total \
GeographyCode

E01006512 24 0 1880

E01006513 53 7 2941

E01006514 61 5 2108

E01006515 18 2 1208

E01006518 19 4 1696

ones

GeographyCode

E01006512 3

E01006513 1

E01006514 1

E01006515 1

E01006518 1

• Deleting variables is also trivial:

In [30]: del db[’ones’]

db.head()

Out[30]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01006512 24 0 1880

E01006513 53 7 2941

E01006514 61 5 2108

E01006515 18 2 1208

E01006518 19 4 1696

11

• Simple querying.

We have already seen how to subset parts of a DataFrame if we know exactly which bits we want. For
example, if we want to extract the total and European population of the first four areas in the table, we use
loc with lists:

In [31]: eu_tot_first4 = db.loc[[’E01006512’, ’E01006513’, ’E01006514’, ’E01006515’], \

[’Total’, ’Europe’]]

eu_tot_first4

Out[31]: Total Europe

GeographyCode

E01006512 1880 910

E01006513 2941 2225

E01006514 2108 1786

E01006515 1208 974

• Querying based on conditions.

However, sometimes, we do not know exactly which observations we want, but we do know what conditions
they need to satisfy (e.g. areas with more than 2,000 inhabitants). For these cases, DataFrames support
selection based on conditions. Let us see a few examples. Suppose we want to select. . .

. . . areas with more than 2,500 people in Total :

In [32]: m5k = db.loc[db[’Total’] > 2500, :]

m5k

Out[32]: Europe Africa Middle East and Asia \
GeographyCode

E01006513 2225 61 595

E01006747 2551 163 812

E01006751 1843 139 568

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01006513 53 7 2941

E01006747 24 2 3552

E01006751 21 1 2572

. . . areas where there are no more than 750 Europeans:

In [33]: nm5ke = db.loc[db[’Europe’] < 750, :]

nm5ke

Out[33]: Europe Africa Middle East and Asia \
GeographyCode

E01033757 731 39 223

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01033757 29 3 1025

. . . areas with exactly ten person from Antarctica and Oceania:

In [34]: oneOA = db.loc[db[’Antarctica and Oceania’] == 10, :]

oneOA

12

Out[34]: Europe Africa Middle East and Asia \
GeographyCode

E01006679 1353 484 354

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01006679 31 10 2232

Pro-tip: these queries can grow in sophistication with almost no limits. For example, here is a case
where we want to find out the areas where European population is less than half the population:

In [35]: eu_lth = db.loc[(db[’Europe’] * 100. / db[’Total’]) < 50, :]

eu_lth

Out[35]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01006512 24 0 1880

• Combining queries.

Now all of these queries can be combined with each other, for further flexibility. For example, imagine
we want areas with more than 25 people from the Americas and Caribbean, but less than 1,500 in total:

In [36]: ac25_l500 = db.loc[(db[’The Americas and the Caribbean’] > 25) & \

(db[’Total’] < 1500), :]

ac25_l500

Out[36]: Europe Africa Middle East and Asia \
GeographyCode

E01033750 1235 53 129

E01033752 1024 19 114

E01033754 1262 37 112

E01033756 886 31 221

E01033757 731 39 223

E01033761 1138 52 138

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01033750 26 5 1448

E01033752 33 6 1196

E01033754 32 9 1452

E01033756 42 5 1185

E01033757 29 3 1025

E01033761 33 11 1372

• Sorting.

Among the many operations DataFrame objects support, one of the most useful ones is to sort a table
based on a given column. For example, imagine we want to sort the table by total population:

In [37]: db_pop_sorted = db.sort(’Total’, ascending=False)

db_pop_sorted.head()

13

Out[37]: Europe Africa Middle East and Asia \
GeographyCode

E01006747 2551 163 812

E01006513 2225 61 595

E01006751 1843 139 568

E01006524 2235 36 125

E01006787 2187 53 75

The Americas and the Caribbean Antarctica and Oceania Total

GeographyCode

E01006747 24 2 3552

E01006513 53 7 2941

E01006751 21 1 2572

E01006524 24 11 2431

E01006787 13 2 2330

If you inspect the help of db.sort, you will find that you can pass more than one column to sort the
table by. This allows you to do so-called hiearchical sorting: sort first based on one column, if equal then
based on another column, etc.

[Optional exercise. Difficulty: 4/5]

• Create a new table that, instead of the total counts, has the percentages of population groups in each
area. Call this db pct.

• Practice your query skills further by answering the following questions:

– What is the most populated area?
– What is the area with the largest variance of group sizes?
– List the five areas with the largest proportion of people born in Antarctica and Oceania.
– Find areas that have more that 25% of population from Europe but are still among the top-5 in

terms of African population.
– [Bonus] Is there any area in the top-5 of percentage of American/Caribbean and of Middle

East/Asia population?

2.0.4 Visual exploration

The next step to continue exploring a dataset is to get a feel for what it looks like, visually. We have already
learnt how to unconver and inspect specific parts of the data, to check for particular cases we might be
intersted in. Now we will see how to plot the data to get a sense of the overall distribution of values. For
that, we will be using the Python library seaborn.

• Histograms.

One of the simplest graphical devices to display the distribution of values in a variable is a histogram.
Values are assigned into groups of equal intervals, and the groups are plotted as bars rising as high as the
number of values into the group.

A histogram is easily created with the following command. In this case, let us have a look at the shape
of the overall population:

In [38]: _ = sns.distplot(db[’Total’], kde=False)

14

http://stanford.edu/~mwaskom/software/seaborn/index.html

Note we are using sns instead of pd, as the function belongs to seaborn instead of pandas.
We can quickly see most of the areas contain somewhere between 1,200 and 1,700 people, approx. How-

ever, there are a few areas that have many more, even up to 3,500 people.
An additinal feature to visualize the density of values is called rug, and adds a little tick for each value

on the horizontal axis:

In [39]: _ = sns.distplot(db[’Total’], kde=False, rug=True)

15

• Kernel Density Plots

Histograms are useful, but they are artificial in the sense that a continuous variable is made discrete by
turning the values into discrete groups. An alternative is kernel density estimation (KDE), which produces
an empirical density function:

In [40]: _ = sns.kdeplot(db[’Total’], shade=True)

16

• Line and bar plots

Another very common way of visually displaying a variable is with a line or a bar chart. For example, if
we want to generate a line plot of the (sorted) total population by area:

In [41]: _ = db[’Total’].order(ascending=False).plot()

17

For a bar plot all we need to do is to change an argument of the call:

In [42]: _ = db[’Total’].order(ascending=False).plot(kind=’bar’)

18

Note that the large number of areas makes the horizontal axis unreadable. We can try to turn the plot
around by displaying the bars horizontally (see how it’s just changing bar for barh). To make it readable,
let us expand the plot’s height:

In [43]: _ = db[’Total’].order().plot(kind=’barh’, figsize=(6, 20))

19

20

[Optional exercise. Difficulty: 3/5]

• Explore the help of sns.distplot and sns.kdeplot to discover additional arguments. Check also the
tutorial.

• Create a figure that overlays both a histogram and a KDE plot of the total population in a single
figure.

• Create histogram and KDE plots for the other variables in the dataset.

2.0.5 Un/tidy data

Happy families are all alike; every unhappy family is unhappy in its own way.

Leo Tolstoy.

Once you can read your data in, explore specific cases, and have a first visual approach to the entire set,
the next step can be preparing it for more sophisticated analysis. Maybe you are thinking of modeling it
through regression, or on creating subgroups in the dataset with particular characteristics, or maybe you
simply need to present summary measures that relate to a slightly different arrangement of the data than
you have been presented with.

For all these cases, you first need what statistitian, and general R wizard, Hadley Wickham calls “tidy
data”. The general idea to “tidy” your data is to convert them from whatever structure they were handed
in to you into one that allows easy and standardized manipulation, and that supports directly inputting the
data into what he calls “tidy” analysis tools. But, at a more practical level, what is exactly “tidy data”? In
Wickham’s own words:

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset
is messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types.

He then goes on to list the three fundamental characteristics of “tidy data”:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

If you are further interested in the concept of “tidy data”, I recommend you check out the original paper
(open access) and the public repository associated with it.

Let us bring in the concept of “tidy data” to our own Liverpool dataset. First, remember its structure:

In [44]: db.head()

Out[44]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania Total

21

http://stanford.edu/~mwaskom/software/seaborn/tutorial/distributions.html#plotting-univariate-distributions
http://www.jstatsoft.org/v59/i10/
https://github.com/hadley/tidy-data

GeographyCode

E01006512 24 0 1880

E01006513 53 7 2941

E01006514 61 5 2108

E01006515 18 2 1208

E01006518 19 4 1696

Thinking through tidy lenses, this is not a tidy dataset. It is not so for each of the three conditions:

• Starting by the last one (each type of observational unit forms a table), this dataset actually contains
not one but two observational units: the different areas of Liverpool, captured by GeographyCode; and
subgroups of an area. To tidy up this aspect, we can create two different tables:

In [45]: db_totals = db[[’Total’]]

db_totals.head()

Out[45]: Total

GeographyCode

E01006512 1880

E01006513 2941

E01006514 2108

E01006515 1208

E01006518 1696

In [46]: # Note we use ‘drop‘ to exclude "Total", but we could also use a list with the names

of all the columns to keep

db_subgroups = db.drop(’Total’, axis=1)

db_subgroups.head()

Out[46]: Europe Africa Middle East and Asia \
GeographyCode

E01006512 910 106 840

E01006513 2225 61 595

E01006514 1786 63 193

E01006515 974 29 185

E01006518 1531 69 73

The Americas and the Caribbean Antarctica and Oceania

GeographyCode

E01006512 24 0

E01006513 53 7

E01006514 61 5

E01006515 18 2

E01006518 19 4

At this point, the table db totals is tidy: every row is an observation, every table is a variable, and
there is only one observational unit in the table.

The other table (db subgroups), however, is not entirely tidied up yet: there is only one observational
unit in the table, true; but every row is not an observation, and there are variable values as the names of
columns (in other words, every column is not a variable). To obtain a fully tidy version of the table, we need
to re-arrange it in a way that every row is a population subgroup in an area, and there are three variables:
GeographyCode, population subgroup, and population count (or frequency).

Because this is actually a fairly common pattern, there is a direct way to solve it in pandas:

In [47]: tidy_subgroups = db_subgroups.stack()

tidy_subgroups.head()

22

Out[47]: GeographyCode

E01006512 Europe 910

Africa 106

Middle East and Asia 840

The Americas and the Caribbean 24

Antarctica and Oceania 0

dtype: int64

The method stack, well, “stacks” the different columns into rows. This fixes our “tidiness” problems
but the type of object that is returning is not a DataFrame:

In [48]: type(tidy_subgroups)

Out[48]: pandas.core.series.Series

It is a Series, which really is like a DataFrame, but with only one column. The additional information
(GeographyCode and population group) are stored in what is called an multi-index. We will skip these for
now, so we would really just want to get a DataFrame as we know it out of the Series. This is also one line
of code away:

In [49]: tidy_subgroupsDF = tidy_subgroups.reset_index()

tidy_subgroupsDF.head()

Out[49]: GeographyCode level 1 0

0 E01006512 Europe 910

1 E01006512 Africa 106

2 E01006512 Middle East and Asia 840

3 E01006512 The Americas and the Caribbean 24

4 E01006512 Antarctica and Oceania 0

And some basic renaming of the columns:

In [50]: tidy_subgroupsDF = tidy_subgroupsDF.rename(columns={’level_1’: ’Subgroup’, 0: ’Freq’})

tidy_subgroupsDF.head()

Out[50]: GeographyCode Subgroup Freq

0 E01006512 Europe 910

1 E01006512 Africa 106

2 E01006512 Middle East and Asia 840

3 E01006512 The Americas and the Caribbean 24

4 E01006512 Antarctica and Oceania 0

Now our table is fully tidied up!

2.0.6 Grouping, transforming, aggregating

One of the advantage of tidy datasets is they allow to perform advanced transformations in a more direct
way. One of the most common ones is what is called “group-by” operations. Originated in the world of
databases, these operations allow you to group observations in a table by one of its labels, index, or category,
and apply operations on the data group by group.

For example, given our tidy table with population subgroups, we might want to compute the total sum
of population by each group. This task can be split into two different ones:

• Group the table in each of the different subgroups.
• Compute the sum of Freq for each of them.

To do this in pandas, meet one of its workhorses, and also one of the reasons why the library has become
so popular: the groupby operator.

23

In [51]: pop_grouped = tidy_subgroupsDF.groupby(’Subgroup’)

pop_grouped

Out[51]: <pandas.core.groupby.DataFrameGroupBy object at 0x109af3c10>

The object pop grouped still hasn’t computed anything, it is only a convenient way of specifying the
grouping. But this allows us then to perform a multitude of operations on it. For our example, the sum is
calculated as follows:

In [52]: pop_grouped.sum()

Out[52]: Freq

Subgroup

Africa 8886

Antarctica and Oceania 581

Europe 435790

Middle East and Asia 18747

The Americas and the Caribbean 2410

Similarly, you can also obtain a summary of each group:

In [53]: pop_grouped.describe()

Out[53]: Freq

Subgroup

Africa count 298.000000

mean 29.818792

std 51.606065

min 0.000000

25% 7.000000

50% 14.000000

75% 30.000000

max 484.000000

Antarctica and Oceania count 298.000000

mean 1.949664

std 2.168216

min 0.000000

25% 0.000000

50% 1.000000

75% 3.000000

max 11.000000

Europe count 298.000000

mean 1462.382550

std 248.673290

min 731.000000

25% 1331.250000

50% 1446.000000

75% 1579.750000

max 2551.000000

Middle East and Asia count 298.000000

mean 62.909396

std 102.519614

min 1.000000

25% 16.000000

50% 33.500000

75% 62.750000

24

max 840.000000

The Americas and the Caribbean count 298.000000

mean 8.087248

std 9.397638

min 0.000000

25% 2.000000

50% 5.000000

75% 10.000000

max 61.000000

Pro-tip: since we only have one variable (Freq), a more compact way to display that summary can be
obtaine with the counterpart of stack, unstack:

In [54]: pop_grouped.describe().unstack()

Out[54]: Freq \
count mean std min 25%

Subgroup

Africa 298 29.818792 51.606065 0 7.00

Antarctica and Oceania 298 1.949664 2.168216 0 0.00

Europe 298 1462.382550 248.673290 731 1331.25

Middle East and Asia 298 62.909396 102.519614 1 16.00

The Americas and the Caribbean 298 8.087248 9.397638 0 2.00

50% 75% max

Subgroup

Africa 14.0 30.00 484

Antarctica and Oceania 1.0 3.00 11

Europe 1446.0 1579.75 2551

Middle East and Asia 33.5 62.75 840

The Americas and the Caribbean 5.0 10.00 61

We will not get into it today as it goes beyond the basics we want to conver, but keep in mind that
groupby allows you to not only call generic functions (like sum or describe), but also your own functions.
This opens the door for virtually any kind of transformation and aggregation possible.

[Optional exercise. Difficulty: 4/5]
Practice your data tidying skills with a different dataset. For example, you can have a look at the

Guardian’s version of Wikileaks’ Afghanistan war logs. The table is stored on a GoogleDoc on the following
address:

https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/

edit?hl=en#gid=1

And its structure is as follows:

In [55]: from IPython.display import IFrame

url = ’https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1’

IFrame(url, 700, 400)

Out[55]: <IPython.lib.display.IFrame at 0x10b1b8a10>

Follow these steps:

25

http://www.theguardian.com/news/datablog/2010/jul/27/wikileaks-afghanistan-data-datajournalism
https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1
https://docs.google.com/spreadsheets/d/1EAx8_ksSCmoWW_SlhFyq2QrRn0FNNhcg1TtDFJzZRgc/edit?hl=en#gid=1

• Download the table as a csv file (File –> Download as –> .csv, current sheet).
• Read it into Python.
• Explore it by creating a few plots.
• Examine its level of tidiness and turn it into a fully tidy dataset.
• Obtain a monthly total count of casualties and create a line or a bar plot of them.

2.1 Appendix: Delving deeper into the Census Data Pack

[Optional extension]
We started this notebook assuming we already knew what variables in particular we wanted, out of the

hundreds available on the Liverpool Census Data Pack. Unfortunately, that is not always the case, and
sometimes you have to explore an entire dataset by yourself to find what you are looking for. To dip your
toes into the sea of the Census Data Pack, in this section we will walk through how to systematically identify
a variable and extract it.

The folder contains data at different scales. We will be using the Local Super Output Area (LSOAs).
The folder is structured in the following way:

In [56]: os.listdir(path)

Out[56]: [’datasets description.csv’,

’metadata.xml’,

’readme.txt’,

’shapefiles’,

’tables’,

’variables description.csv’]

For now, we will ignore the spatial information contained in the folder shapefiles and focus on the
tables one. If you have a peek at the folder, it contains many files. You can get their names into a Python
list with the following command:

In [57]: csvs = os.listdir(path + ’tables’)

And count them using the core fuction len, which returns the length of a list:

In [58]: len(csvs)

Out[58]: 303

That is right, 303 files! Luckily, to navigate that sea of seemingly non-sensical letters, there is a codebook
that explains things a bit. You can open it with a text editor or a spreadsheet program but, since it is a csv

file, we can also ingest it with Python:

In [59]: codebook = pd.read_csv(path + ’datasets_description.csv’, index_col=0)

Now we have read the file, we can inspect it. For example, to show the first lines of the table:

In [60]: codebook.head()

Out[60]: DatasetTitle

DatasetId

CT0010 Ethnic group write-ins

KS101EW Usual resident population

KS102EW Age structure

KS103EW Marital and civil partnership status

KS104EW Living arrangements

26

You can use the index chosen to query rows. For example, if we want to see what dataset code QS203EW

corresponds to:

In [61]: codebook.loc[’QS203EW’, ’DatasetTitle’]

Out[61]: ’Country of birth (detailed)’

If we want to see what that dataset contains, there is another file in the folder called
variables description.csv that has further information. We can bring it in the same way we did before
and, again, we will index it using the first column of the table, the ID of the dataset where the variable
belongs to:

In [62]: variables = pd.read_csv(path+’variables_description.csv’, index_col=0)

To have a sense of how large it is, we can call its shape property, which returns the number of rows and
columns, respectively:

In [63]: variables.shape

Out[63]: (2563, 3)

2,563 different variables!!! Let us see what the structure of the table is:

In [64]: variables.head()

Out[64]: ColumnVariableCode ColumnVariableMeasurementUnit \
DatasetId

CT0010 CT00100001 Count

CT0010 CT00100002 Count

CT0010 CT00100003 Count

CT0010 CT00100004 Count

CT0010 CT00100005 Count

ColumnVariableDescription

DatasetId

CT0010 All categories: Ethnic group

CT0010 English/Welsh/Scottish/Northern Irish/British

CT0010 Irish

CT0010 Gypsy or Irish Traveller

CT0010 Other White

If we are interested in exploring the country of birth (code QS203EW), we can subset the table using loc

in a similar way as before. The only difference is that now we do not want to restrict the column to only
one, so we use the colon : instead of a particular name, including thus all the columns. Let us also save the
subset by assigning it to a new object, birth orig:

In [65]: birth_orig = variables.loc[’QS203EW’, :]

birth_orig.shape

Out[65]: (78, 3)

To be clear, the table above contains all the variables that the dataset QS203EW is comprised of. This
means that, for every row in this table, there is a column in the actual dataset which, for the LSOAs, is on
the file QS203EW lsoa11.csv, in the tables folder.

This is still a lot. Arguably, to get a first sense of the data and start exploring it, we do not need every
single disaggregation available. Let us look at the names and codes of the first 25 variables to see if we can
spot any pattern that helps us simplify (note how we now use : first to indicate we want all the rows):

27

In [66]: birth_orig.loc[:, [’ColumnVariableCode’, ’ColumnVariableDescription’]].head(25)

Out[66]: ColumnVariableCode \
DatasetId

QS203EW QS203EW0001

QS203EW QS203EW0002

QS203EW QS203EW0003

QS203EW QS203EW0004

QS203EW QS203EW0005

QS203EW QS203EW0006

QS203EW QS203EW0007

QS203EW QS203EW0008

QS203EW QS203EW0009

QS203EW QS203EW0010

QS203EW QS203EW0011

QS203EW QS203EW0012

QS203EW QS203EW0013

QS203EW QS203EW0014

QS203EW QS203EW0015

QS203EW QS203EW0016

QS203EW QS203EW0017

QS203EW QS203EW0018

QS203EW QS203EW0019

QS203EW QS203EW0020

QS203EW QS203EW0021

QS203EW QS203EW0022

QS203EW QS203EW0023

QS203EW QS203EW0024

QS203EW QS203EW0025

ColumnVariableDescription

DatasetId

QS203EW All categories: Country of birth

QS203EW Europe: Total

QS203EW Europe: United Kingdom: Total

QS203EW Europe: United Kingdom: England

QS203EW Europe: United Kingdom: Northern Ireland

QS203EW Europe: United Kingdom: Scotland

QS203EW Europe: United Kingdom: Wales

QS203EW Europe: Great Britain not otherwise specified

QS203EW Europe: United Kingdom not otherwise specified

QS203EW Europe: Guernsey

QS203EW Europe: Jersey

QS203EW Europe: Channel Islands not otherwise specified

QS203EW Europe: Isle of Man

QS203EW Europe: Ireland

QS203EW Europe: Other Europe: Total

QS203EW Europe: Other Europe: EU Countries: Total

QS203EW Europe: Other Europe: EU countries: Member cou...

QS203EW Europe: Other Europe: EU countries: Member cou...

QS203EW Europe: Other Europe: EU countries: Member cou...

QS203EW Europe: Other Europe: EU countries: Member cou...

QS203EW Europe: Other Europe: EU countries: Member cou...

QS203EW Europe: Other Europe: EU countries: Member cou...

28

QS203EW Europe: Other Europe: EU countries: Member cou...

QS203EW Europe: Other Europe: EU countries: Accession ...

QS203EW Europe: Other Europe: EU countries: Accession ...

Note how we have been able to pass a list of variables we wanted to select as columns, and pandas has
returned the dataframe “sliced” with only those, cutting off the rest.

It looks like the variable name follows a hierarchical pattern that dissaggregates by regions of the world. A
sensible first approach might be to start considering only the largest regions. To do that, we need a list of the
variable name for those aggregates since, once we have it, subsetting the dataframe will be straightforward.
There are several ways we can go about it:

• Since there are not that many regions, we can hardcode them into a list, the same we have used above:

In [67]: region_codes = [’QS203EW0002’, ’QS203EW0032’, ’QS203EW0045’, \

’QS203EW0063’, ’QS203EW0072’]

[Advanced extension. Optional]

• However, this approach would not get us very far if the list was longer. For that, a much more useful
way is to write a loop that builds the list for us. To do this, we can remember some of the tricks learnt
in the previous session about writing for loops and if statements and combine them with new ones
about working with strings.

In [68]: regions = []

for var in birth_orig[’ColumnVariableDescription’]:

Split the name of the variable in pieces by ’: ’

pieces = var.split(’: ’)

Keep the first one (top hierarchy) and append ’: Total’

name = pieces[0] + ’: Total’

If the name create matches the variable (exists in the original list),

add the name to the list

if name == var:

regions.append(name)

regions

Out[68]: [’Europe: Total’,

’Africa: Total’,

’Middle East and Asia: Total’,

’The Americas and the Caribbean: Total’,

’Antarctica and Oceania: Total’]

Let us work slowly by each step of this loop:

• We first create an empty list where we will store the names of the regions.
• We begin a loop over every single row the column containing the names

(ColumnVariableDescription).
• For each name, which is a string, we split it in pieces using ": " as the points in the string where we

want to break it, obtaining a list with the resulting pieces. For instance if we have Europe: Total, we
essentially do:

In [69]: ’Europe: Total’.split(’: ’)

Out[69]: [’Europe’, ’Total’]

• We keep the first element, as it contains the name we want to maintain.

29

• In order to build the actual name of the variable, we join it to ": Total", obtaining the string we
want to keep:

In [70]: ’Europe’ + ’: Total’

Out[70]: ’Europe: Total’

• We then check that the string we have built is the same as the variable we began with. If so, we save
it on the list we created in the beginning. This step is a bit counter-intuitive, but is done to ensure a)
that the name of the variable exists, and b) that it is saved only once.

Now we have the names, we need to convert them into the codes. There are several ways to go about it,
but here we will show one that relies on the indexing capabilities of pandas. Essentially we take birth orig

and index it on the names of the variables, to then subset it, keeping only those in our list (the variables we
want to retain).

In [71]: subset = birth_orig.set_index(’ColumnVariableDescription’).reindex(regions)

subset

Out[71]: ColumnVariableCode \
ColumnVariableDescription

Europe: Total QS203EW0002

Africa: Total QS203EW0032

Middle East and Asia: Total QS203EW0045

The Americas and the Caribbean: Total QS203EW0063

Antarctica and Oceania: Total QS203EW0072

ColumnVariableMeasurementUnit

ColumnVariableDescription

Europe: Total Count

Africa: Total Count

Middle East and Asia: Total Count

The Americas and the Caribbean: Total Count

Antarctica and Oceania: Total Count

Once this is done, all left to do is to retrieve the codes:

In [72]: region_codes = list(subset.ColumnVariableCode)

region_codes

Out[72]: [’QS203EW0002’, ’QS203EW0032’, ’QS203EW0045’, ’QS203EW0063’, ’QS203EW0072’]

Which is the same that we hardcoded originally, only it has been entirely picked up by the python
program, not a human.

Geographic Data Science’15 - Lab 2 by Dani Arribas-Bel is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

30

	Geographic Data Science - Lab 02
	Data munging
	The Liverpool Census Data Pack
	Reading data (data I/O)
	Data, sliced and diced
	Visual exploration
	Un/tidy data
	Grouping, transforming, aggregating

	Appendix: Delving deeper into the Census Data Pack

