Statistical analysis

Dani Arribas-Bel & Thomas De Graaff

September 5, 2014

Outline

Today

- Reproducible statistical analysis
- Reinhart & Rogoff: a textbook example of the power of replication
- R: what is it and why should I care?
- R overview
 - Libraries and help
 - Reading data
 - Exploring the data.frame
 - Manipulate a data.frame
 - Analyze data
 - Visualize data
 - Export results

Introduction

Reproducible statistical analysis

Open principles applied to the way you conduct statistical data analysis:

- Make the process explicit and transparent
- Provide every input required to reproduce the analysis carried out and obtain the same results, as reported in the final document published

This typically involves three levels:

- Data used for the study
- ▶ **Code** created to perform the analysis
- ▶ Platform required to run the code

Being fully open on the three is not always possible (e.g. proprietary data/software), but that should be goal to which to get as close as possible.

Getting halfway is better than not starting

In this session we will focus on the last two: code and platform

Reinhart & Rogoff

- ▶ In 2010, C. Reinhart and K. Rogoff put together a paper claiming to show how economic growth is seriously dampened once the ratio of debt to GDP goes above 90%
- ► The paper was very influential and became one of the most commonly cited ones to argue for austerity measures
- ▶ In 2013, **Thomas Herndon**, a PhD student at UMass, tried to replicate the results for a class assignment
- He could not, so finally he obtained from Reinhart the original (Excel) code and data only to find results diverged because of:
 - Selective exclusion of available data
 - Unconventional weighting of summary statistics
 - Coding errors
- ► The **replication** is posted online, together with the data and R code used for the paper

Reinhart & Rogoff

Lessons:

- No one is free from mistakes (even Harvard top economists!)
- Posting your data and code but, if you don't, sharing them honestly upon request is a good second best
- Replication should be much more widespread
- you should not underestimate PhD students without a big name but with lots of time!

R

R: what is it?

R is a language and environment for statistical computing and graphics

- ► language & environment
- statistical computing
- graphics

Characteristics:

- ▶ It is a Free implementation of the S language created by Ross Ihaka and Robert Gentleman in 1993
- Cross-platform: runs on many *nix (included Linux) systems,
 Windows and MacOS.
- It is licensed under GPL, which makes it free...
 - ... as in beer
 - ... as in speech

Why should I care about R?

- Philosophy behind the project
- ► Convenience (once you get ahead the learning curve)

Some people who care about R:

- Many top universities use R in teaching and research
- Google and Facebook
- New York Times

The R Philosophy

... Then sit back, relax, and enjoy being part of something big...
[Tom Preston-Werner]

Being Free Software ("the users have the freedom to run, copy, distribute, study, change and improve the software") has enhanced:

- Worldwide community of dedicated and enthusiastic users, contributors and developers that:
 - Lowers the entry barriers (mailing lists, blog posts, online tutorials, workshops...)
 - Continuously expands the capability and functionality
- Becoming an instrument for democratization of academic software and technology transfer
- ▶ Becoming the **lingua franca** in academia
- ► Facilitating reproductibility and Open Science

R as free beer

- ► The price is right
 - Education
 - Installation across multiple machines
- ► The beer selection is wide (CRAN hosts 3,669 available packages as of March 10th. 2012)
 - Makes R a good one stop-shop and a good investment of your time to learn it
 - No market profitability constraints put it at the cutting edge (research sandbox)
- ► Linus' Law: "given enough eyeballs, all bugs are shallow"
 - More reliable and stable

Ways to interact with R

Interactive shell

Ways to interact with R

Batch mode from the command line

```
000
                                         2. bash
Last login: Mon Sep 1 18:19:36 on ttys003
-bash: HOME: command not found
kokopelli:~ dani$
kokopelli:~ dani$
kokopelli:~ dani$
kokopelli:~ dani$
kokopelli:~ dani$ R CMD BATCH a_little_luck.R
```

Ways to interact with R

► IDEs (e.g. RStudio)

R overview

Packages

Look for R info and packages

- Project website: http://r-project.org
- ► The Comprehensive R Archive Network (CRAN)
- The R-Journal (and JoSS)
- R bloggers
- Twitter: the #rstats hashtag
- Google (good luck on that)

Install and load packages

- Windows and MacOS GUIs have installers
- Command line with instal.packages function
- Command library (e.d. library(maptools) to load the package maptools)

Help

NEVER HAVE I FELT SO CLOSE TO ANOTHER SOUL AND YET SO HELPLESSLY ALONE AS WHEN I GOOGLE AN ERROR AND THERE'S ONE RESULT A THREAD BY SOMEONE WITH THE SAME PROBLEM ANO NO ANSWER LAST POSTED TO IN 2003

Help and documentation

▶ R built-in search capability

Command	Function			
?read.csv	Check local documentation for read.csv function			
<pre>spdep::moran.test</pre>	Check local documentation in package spdep for moran.test			
help("read.csv")	Check local documentation for read.csv function			
help.search("read.csv") Search for "read.csv" in all help fil				
RSiteSearch("plot maps")	Search for the term "plot maps" in the RSiteSearch website (requires connectivity)			

StackOverflow

Reading data

Point to the folder

```
#setwd('~/code/WooWii/slides/')
getwd()
```

Native csv reading

```
nl <- read.csv("../Paper/Final/Data/RR - Netherlands.csv")</pre>
```

[1] "/Users/tomba/Dropbox/Thomas/Colleges/Workflow/Woow

Foreign formats supported

```
library(foreign)
proc <- read.dta("../Paper/Final/Data/RR-processed.dta")</pre>
```

Many other formats supported (dbf, xls, sql-like databases...)

Exploring a data.frame

head/tail for the top/bottom of the table

```
head(nl)
```

```
## Country Year Debt GDP1 GDP2 RGDP1 RGDP2 GDP11 GDP
## 1 Netherlands 1807 NA 490.3 NA 381.9 NA 128.4
## 2 Netherlands 1808 NA 436.2 NA 339.3 NA 128.6
## 3 Netherlands 1809 NA 407.9 NA 334.8 NA 121.8
## 4 Netherlands 1810 NA NA NA NA NA NA NA
## 5 Netherlands 1811 NA NA NA NA NA NA NA
```

```
nl[1, ]
```

```
## Country Year Debt GDP1 GDP2 RGDP1 RGDP2 GDPI1 GDP
## 1 Netherlands 1807 NA 490.3 NA 381.9 NA 128.4
```

Exploring a data.frame

```
max(nl$GDP1, na.rm=TRUE)
## [1] 6489
min(nl$Debt, na.rm=TRUE)
## [1] 6.6
Create new variables
nl['dtg'] = nl$Debt / nl$GDP1
```

Exploring a data.frame summary for basic statistics

Country

: 14.5

:212.3

1st Qu.: 53.4

Median :178.8

3rd Qu.:316.1

summary(n1)

##

##

##

##

##

##

Min.

Mean

##	Netherlands:204	Min. :180	7 Min. :	7 Min.
##		1st Qu.:185	8 1st Qu.:	26 1st Qı
##		Median :190	8 Median:	620 Median
##		Mean :190	8 Mean : 1	263 Mean
##		3rd Qu.:195	9 3rd Qu.: 1	158 3rd Qı
##		Max. :201	0 Max. :12	619 Max.
##			NA's :74	NA's
##	GDP2	RGDP1	RGDP2	GDP:

335

772

2078

: 61539

Min.

Mean

Min.

Mean

1st Qu.:

Median:

3rd Qu.: 83826

Year

Debt

:243

:356

1st Qu.:279

Median:343

3rd Qu.:427

Min.

Mean

1st Qu.

Median

3rd Qu.

Querying a data.frame

A data.frame has fancy query features

```
with_debt <- nl[!is.na(nl$Debt), ]
head(with_debt, 3)</pre>
```

Country Year Debt GDP1 GDP2 RGDP1 RGDP2 GDP11 GDP4 T4 Netherlands 1880 942 1120 NA 1139 NA 98.36 ## 75 Netherlands 1881 941 1134 NA 1160 NA 97.80

76 Netherlands 1882 999 1191 NA 1191 NA 100.00

```
nl_clean <- nl[!is.na(nl$GDP1), ]
mean_gdp <- mean(nl_clean$GDP1)
high_gdp <- nl_clean[nl_clean$GDP1 > mean_gdp, ]
head(high_gdp, 3)
```

Country Year Debt GDP1 GDP2 RGDP1 RGDP2 GDP11 GP ## 99 Netherlands 1905 1106 1711 NA 1931 NA 88.62 ## 100 Netherlands 1906 1145 1823 NA 1971 NA 92.50

Querying a data.frame

Which you can combine:

```
super_clean <- nl[(!is.na(nl$GDP1)) & (!is.na(nl$Debt)), ]
ratio <- super_clean$Debt / super_clean$GDP1
good_years <- super_clean[(ratio < 0.9) & (super_clean$GDP)
head(good_years, 3)</pre>
```

```
## Country Year Debt GDP1 GDP2 RGDP1 RGDP2 GDP11 GF ## 99 Netherlands 1905 1106 1711 NA 1931 NA 88.62 ## 100 Netherlands 1906 1145 1823 NA 1971 NA 92.50 ## 101 Netherlands 1907 1140 1812 NA 1935 NA 93.61
```

Hands on!

In proc:

- ▶ In what country and year the GDP is largest?
- ► Show a country in which the Debt/GDP ratio has never been beyond 90%

Answer

▶ In what country and year the GDP is largest?

```
clean_gdp <- proc[!is.na(proc$GDP), ]
max_gdp <- max(clean_gdp$GDP)
top_gdp <- clean_gdp[clean_gdp$GDP == max_gdp, ]
top_gdp[, c('Country', 'Year', 'GDP')]</pre>
```

```
## Country Year GDP
## 1107 UK 2008 1446110
```

► Show a country in which the Debt/GDP ratio has never been beyond 90%

```
proc['dtg'] <- 100 * proc$Debt / proc$GDP
debt_to_gdp_clean <- proc[!is.na(proc$dtg), ]
good_boys <- debt_to_gdp_clean[debt_to_gdp_clean$dtg < 0.9
good_boys[1:5, c('Country', 'Year', 'dtg')]</pre>
```

Analyze data: regression

##

```
ols <- lm('log(Debt) ~ log(GDP)', data=proc)</pre>
summary(ols)
##
## Call:
## lm(formula = "log(Debt) ~ log(GDP)", data = proc)
##
## Residuals:
     Min 1Q Median 3Q
                              Max
##
## -0.698 -0.259 -0.121 0.120 1.421
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.2086 0.1640 -1.27 0.21
## log(GDP) 0.9668 0.0164 59.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Visualization

plot(log(proc\$GDP), log(proc\$Debt))

Try also plot(ols) in RStudio!

Advanced manipulations

Corrected Reinhart & Rogoff Table 1 (as shown by Herndon et al.)

```
library(xtable)
proc$dgcat.lm <- cut(proc$debtgdp, breaks=c(0,30,60,90)</pre>
```

proc\$dgcat.lm <- cut(proc\$debtgdp, breaks=c(0,30,60,90,Inf)
proc\$dgcat <- factor(proc\$dgcat.lm, labels = c("0-30%","30(RR.correct.mean <- with(proc, tapply(dRGDP, dgcat, mean,</pre>

Converted to a data.frame

60-90%

table_df <- data.frame(RR.correct.mean, dgcat=names(RR.correct
table_df</pre>

60-90% * 45 * 45 * 5 * 990

```
## RR.correct.mean dgcat
## 0-30% 4.174 0-30%
## 30-60% 3.116 30-60%
```

3 222

Export results

##

Simply write to a csv

```
write.csv(table df, '~/Desktop/table.csv')
Or to LaTeX
library(xtable)
xtable(table df)
## % latex table generated in R 3.1.1 by xtable 1.7-3 packs
## % Fri Sep 5 18:10:51 2014
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrl}
   \hline
##
## & RR.correct.mean & dgcat \\
##
   \hline
## 0-30\% & 4.17 & 0-30\% \\
                                     4□ ト ← □ ト ← 亘 ト → 亘 → り Q ○
```

30-60\% & 3 12 & 30-60\% \\

Export results

If we wanted to write it out to a file

```
sink('~/Desktop/table.tex')
xtable(table_df)
sink()
```


Content by Dani Arribas-Bel and Thomas De Graaff, licensed under Creative Commons Attribution 4.0 International License.

For this session, we have borrowed important amounts of inspiration and material from **Software Carpentry**'s session on git and the freely available book Pro Git